(14分)在R上定義運算,記

(1)若在x=1處有極值,求b, c的值;

(2)求曲線上斜率為c的切線與該曲線的公共點;

(3)記的最大值為M,若對任意b, c恒成立,求k的最大值。

 

【答案】

 

(1)b=1,c=3

(2)(0,0)

(3)1/2

【解析】

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在R上定義運算:p?q=-
1
3
(p-c)(q-b)+4bc
(b、c∈R是常數(shù)),已知f1(x)=x2-2c,f2(x)=x-2b,f(x)=f1(x)f2(x).
①如果函數(shù)f(x)在x=1處有極值-
4
3
,試確定b、c的值;
②求曲線y=f(x)上斜率為c的切線與該曲線的公共點;
③記g(x)=|f′(x)|(-1≤x≤1)的最大值為M,若M≥k對任意的b、c恒成立,試求k的取值范圍.(參考公式:x3-3bx2+4b3=(x+b)(x-2b)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在R上定義運算?:p?q=-
1
3
(p-c)(q-b)+4bc
(b、c為實常數(shù)).記f1(x)=x2-2x,f2(x)=x-2b,x∈R.令f(x)=f1(x)?f2(x).
(Ⅰ)如果函數(shù)f(x)在x=1處有極值-
4
3
,試確定b、c的值;
(Ⅱ)記g(x)=|f(x)|(-1≤x≤1)的最大值為M.若M≥k對任意的b、c 恒成立,試示k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)綜合復(fù)習(xí)試卷(2)(解析版) 題型:解答題

在R上定義運算:(b、c∈R是常數(shù)),已知f1(x)=x2-2c,f2(x)=x-2b,f(x)=f1(x)f2(x).
①如果函數(shù)f(x)在x=1處有極值,試確定b、c的值;
②求曲線y=f(x)上斜率為c的切線與該曲線的公共點;
③記g(x)=|f′(x)|(-1≤x≤1)的最大值為M,若M≥k對任意的b、c恒成立,試求k的取值范圍.(參考公式:x3-3bx2+4b3=(x+b)(x-2b)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年湖北省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在R上定義運算:(b、c∈R是常數(shù)),已知f1(x)=x2-2c,f2(x)=x-2b,f(x)=f1(x)f2(x).
①如果函數(shù)f(x)在x=1處有極值,試確定b、c的值;
②求曲線y=f(x)上斜率為c的切線與該曲線的公共點;
③記g(x)=|f′(x)|(-1≤x≤1)的最大值為M,若M≥k對任意的b、c恒成立,試求k的取值范圍.(參考公式:x3-3bx2+4b3=(x+b)(x-2b)2

查看答案和解析>>

同步練習(xí)冊答案