9.設(shè)函數(shù)f(x)=alnx-bx2(x>0),若函數(shù)y=f(x)在x=1處與直線y=-1相切.
(Ⅰ) 求實(shí)數(shù)a,b的值;
(Ⅱ) 求函數(shù)y=f(x)在$[{\frac{1}{e},e}]$上的最大值.

分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),根據(jù)函數(shù)y=f(x)在x=1處與直線y=-1相切,得到關(guān)于a,b的方程組,解出即可;
(Ⅱ)求出f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出f(x)的最大值即可.

解答 解:(Ⅰ)$f'(x)=\frac{a}{x}-2bx$…(1分),
∵函數(shù)y=f(x)在x=1處與直線y=-1相切.
∴$\left\{\begin{array}{l}f'(1)=a-2b=0\\ f(1)=-b=-1\end{array}\right.$…(3分),
解得:a=2,b=1…(4分),
 (Ⅱ)由(Ⅰ)得,$f(x)=2lnx-{x^2},f'(x)=\frac{2}{x}-2x=\frac{{2({1-{x^2}})}}{x}$.
令f(x)=0,∵x>0,∴x=1…(5分),
當(dāng)$x∈({\frac{1}{e},1}),f'(x)>0,x∈({1,e}),f'(x)<0$,
∴x=1為函數(shù)y=f(x)的極大值點(diǎn),…(8分),
又$f(1)=-1,f({\frac{1}{e}})=-2-\frac{1}{e^2}<-1$,f(e)=2-e2<-1,
∴[f(x)]max=f(1)=-1…(10分)

點(diǎn)評(píng) 本題考查了切線方程問(wèn)題,考查函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.給出如圖的一個(gè)算法的程序框圖,則輸出S的值是( 。
A.15B.31C.63D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.?dāng)?shù)列2,5,10,17,…的一個(gè)通項(xiàng)公式為(  )
A.2nB.n2+nC.2n-1D.n2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.平面直角坐標(biāo)系xOy中,過(guò)橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F作直線$x+y-\sqrt{2}=0$交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為$\frac{1}{2}$.
(1)求M的方程;
(2)設(shè)直線x-my+1=0交橢圓M于C,D兩點(diǎn),判斷點(diǎn)$G(-\frac{9}{4},0)$與以線段CD為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列選項(xiàng)中,說(shuō)法正確的是(  )
A.若a>b>0,則${log_{\frac{1}{2}}}a>{log_{\frac{1}{2}}}b$
B.向量$\overrightarrow a=(1,m),\overrightarrow b=(m,2m-1)$(m∈R)共線的充要條件是m=0
C.命題“?n∈N*,3n>(n+2)•2n-1”的否定是“?n∈N*,3n≥(n+2)•2n-1
D.已知函數(shù)f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,則命題“若f(a)•f(b)<0,則f(x)在區(qū)間(a,b)內(nèi)至少有一個(gè)零點(diǎn)”的逆命題為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若點(diǎn)P在y=x2上,點(diǎn)Q在x2+(y-3)2=1上,則|PQ|的最小值為(  )
A.$\sqrt{3}$-1B.$\frac{\sqrt{11}}{2}$-1C.2D.$\frac{\sqrt{10}}{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.圓${C_1}:{({x-1})^2}+{y^2}=1$與圓${C_2}:{({x+3})^2}+{({y-2})^2}=4$的位置關(guān)系是( 。
A.內(nèi)切B.外切C.相交D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}y=\frac{{\sqrt{3}}}{2}t\\ x=m+\frac{1}{2}t\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為:ρ2cos2θ=1.
(1)以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程;
(2)若求直線,被曲線C截得的弦長(zhǎng)為$2\sqrt{10}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如果三點(diǎn)A(2,1),B(-2,a),C(6,8)在同一直線上,在a=-6.

查看答案和解析>>

同步練習(xí)冊(cè)答案