【題目】如圖是某直三棱柱被削去上底后的直觀圖與三視圖的側視圖、俯視圖,在直觀圖中,M是BD的中點, ,側視圖是直角梯形,俯視圖是等腰直角三角形,有關數(shù)據如圖所示.

(Ⅰ)求證:EM平面ABC;

(Ⅱ)求出該幾何體的體積

【答案】(Ⅰ)見解析(Ⅱ)4

【解析】試題分析:(1)去中點,可以證明四邊形為平行四邊形,從而得到,利用線面平行的判定定理可以得到平面.(2)該幾何體是一個四棱錐,其高為,底面為直角梯形,上下底分別為,高為,從而可以計算四棱錐的體積為

解析: 的中點,取 中點 ,連接, 且, ,故四邊形為平行四邊形, ,平面, 平面, 平面

()解:由己知, , ,且, 平面, ,又, 平面, 是四棱錐的高,梯形的面積 , ,即所求幾何體的體積為4

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與直線相切.

(1)若直線與圓交于兩點,求;

(2)設圓軸的負半軸的交點為,過點作兩條斜率分別為的直線交圓兩點,且,試證明直線恒過一定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=axlnx﹣x+l (aR),且f(x)0.

(I)求a;

II)求證:當,nN*時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標系.已知曲線Cρsin2θ2acos θ(a>0),過點P(2,-4)的直線l的參數(shù)方程為,直線l與曲線C分別交于M,N兩點.若|PM|,|MN||PN|成等比數(shù)列,則a的值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,半徑為2的圓內有兩條圓弧,一質點M自點A開始沿弧A-B-C-O-A-D-C做勻速運動,則其在水平方向(向右為正)的速度的圖像大致為( )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法:

①將一組數(shù)據中的每個數(shù)據都加上或減去同一個常數(shù)后,方差恒不變;

②設有一個回歸方程=3-5x,變量x增加一個單位時,y平均增加5個單位;

③線性回歸方程x必過();

④在一個2×2列聯(lián)表中,由計算得K2=13.079,則有99%以上的把握認為這兩個變量間有關系.

其中錯誤的個數(shù)是(  )

本題可以參考獨立性檢驗臨界值表:

P(K2k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

A. 0 B. 1

C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016·武昌調研)如圖,在圓內畫1條線段,將圓分成2部分;畫2條相交線段,將圓分割成4部分;畫3條線段,將圓最多分割成7部分;畫4條線段,將圓最多分割成11部分.則

(1)在圓內畫5條線段,將圓最多分割成________部分;

(2)在圓內畫n條線段,將圓最多分割成________部分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)需要設計一個倉庫,它由上下兩部分組成,上部的形狀是正四棱錐PA1B1C1D1,下部的形狀是正四棱柱ABCDA1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.

(1)若AB=6 m,PO1=2 m,則倉庫的容積是多少?

(2)若正四棱錐的側棱長為6 m,則當PO1為多少時,倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)討論函數(shù)的單調性;

(2)當時,記,是否存在整數(shù),使得關于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案