函數(shù)在一個周期內(nèi)的圖像如圖所示,A為圖像的最高點(diǎn),B.C為圖像與軸的交點(diǎn),且為正三角形.
(1)若,求函數(shù)的值域;
(2)若,且,求的值.
(1) 的值域為;(2)。
解析試題分析:(1)由已知得:
又為正三角形,且高為,則BC=4.所以函數(shù)的最小正周期為8,即,.
因為,所以.
函數(shù)的值域為 6分
(2)因為,有
由x0
所以,
故
12分
考點(diǎn):本題主要考查正弦型函數(shù)圖象和性質(zhì),三角函數(shù)和差倍半公式的應(yīng)用。
點(diǎn)評:中檔題,三角函數(shù)問題,是高考常?疾榈筋}目,一般考點(diǎn)考查定位于正弦型函數(shù)圖象和性質(zhì),三角函數(shù)和差倍半公式的應(yīng)用及正弦定理余弦定理的應(yīng)用。本題(2)解答中,充分利用“變角”技巧,使問題的解決變得比較輕松。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量.
(1)求的增區(qū)間;
(2)已知△ ABC內(nèi)接于半徑為6的圓,內(nèi)角A、B、C的對邊分別
為,若,求邊長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知tanα=2,求+ sin2α﹣3sinα•cosα的值。
(2)已知角α終邊上一點(diǎn)P(﹣,1),求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,
設(shè).
(Ⅰ)求的表達(dá)式;
(Ⅱ)若函數(shù)和函數(shù)的圖象關(guān)于原點(diǎn)對稱,
(。┣蠛瘮(shù)的解析式;
(ⅱ)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)l的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com