由“半徑為R的圓內(nèi)接矩形中,正方形的面積最大”,推理出“半徑為R的球的內(nèi)接長(zhǎng)方體中,正方體的體積最大”是( )
A.歸納推理 | B.類比推理 | C.演繹推理 | D.以上都不是 |
B
解析試題分析:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).所以,由“半徑為R的圓內(nèi)接矩形中,正方形的面積最大”,推理出“半徑為R的球的內(nèi)接長(zhǎng)方體中,正方體的體積最大”是類比推理。選B。
考點(diǎn):本題主要考查類比推理。
點(diǎn)評(píng):簡(jiǎn)單題,類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
下列平面圖形中與空間的平行六面體作為類比對(duì)象較合適的是( )
A.三角形 | B.梯形 | C.平行四邊形 | D.矩形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
用數(shù)學(xué)歸納法證明不等式,第二步由k到k+1時(shí)不等式左邊需增加( )
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
用反證法證明“如果a>b,那么>”假設(shè)的內(nèi)容應(yīng)是( )
A.= | B.< |
C.=且< | D.=或< |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
根據(jù)偶函數(shù)定義可推得“函數(shù)在上是偶函數(shù)”的推理過(guò)程是( )
A.歸納推理 | B.類比推理 | C.演繹推理 | D.非以上答案 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
36的所有正約數(shù)之和可按如下方法得到:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/20/2/1dtz13.png" style="vertical-align:middle;" />,所以36的所有正約數(shù)之和為
參照上述方法,可求得200的所有正約數(shù)之和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
定義平面向量之間的一種運(yùn)算“☉”如下:對(duì)任意的a=(m,n),b=(p,q),令a☉b=mq-np.下面說(shuō)法錯(cuò)誤的是( )
A.若a與b共線,則a☉b=0 |
B.a(chǎn)☉b=b☉a |
C.對(duì)任意的λ∈R,有(λa)☉b=λ(a☉b) |
D.(a☉b)2+(a·b)2=|a|2|b|2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com