已知曲線C:x2y+xy2=1,則曲線C關(guān)于對稱的序號有( )
(1)x軸對稱;(2)y軸對稱;(3)原點對稱;(4)直線y=x對稱;(5)直線y=-x對稱.
A.(3)(4)
B.(1)(5)
C.(4)
D.(2)(5)
【答案】分析:設(shè)(a,b)點在曲線上,則(a,b)點滿足方程x2y+xy2=1,然后判定(a,-b),(-a,b),(-a,-b),(b,a),(-b,-a)是否在曲線C上,從而得到結(jié)論.
解答:解:若(a,b)點在曲線上則a2b+ab2=1
令x=a,y=-b,則-a2b+ab2=1,故點(a,-b)不在曲線C上,即不關(guān)于x軸對稱;
令x=-a,y=b,則a2b-ab2=1,故點(-a,b)不在曲線C上,即不關(guān)于y軸對稱;
令x=-a,y=-b,則-a2b-ab2=1,故點(-a,-b)不在曲線C上,即不關(guān)于原點對稱;
令x=b,y=a,則ab2+a2b=1,故點(b,a)在曲線C上,即關(guān)于直線y=x對稱;
令x=-b,y=-a,則-ab2-a2b=1,故點(-b,-a)不在曲線C上,即不關(guān)于直線y=-x對稱.
故選C.
點評:本題主要考查的知識點是曲線的對稱性,當(a,b)點在曲線上時,(-a,-b)點也在曲線上,則曲線關(guān)于原點對稱;當(a,b)點在曲線上時,(-a,b)點也在曲線上,則曲線關(guān)于y軸對稱;當(a,b)點在曲線上時,(a,-b)點也在曲線上,則曲線關(guān)于x軸對稱;當(a,b)點在曲線上時,(b,a)點也在曲線上,則曲線關(guān)于直線x-y=0對稱;當(a,b)點在曲線上時,(-b,-a)點也在曲線上,則曲線關(guān)于直線x-y=0對稱,屬于基礎(chǔ)題.