(本題滿分16分)
函數(shù)f(x)=x3+3ax2+3bx+c在x=2處有極值,其圖象在x=1處的切線平行于直線3x+y+2=0.
(1)求a,b的值; 。2)求函數(shù)的極大值與極小值的差.
(1)a=-1,b=0
(2)4
【解析】(1)f ¢(x)=3x2+6ax+3b.令f ¢(x)=0,得3x2+6ax+3b=0(Ⅰ),因?yàn)?i>f(x)在x=2處有極值,所以,x=2是方程(Ⅰ)的根,代入得4+4a+b=0 ①;又圖象在x=1處的切線平行于直線3x+y+2=0,故y¢|x=1=-3,即3+6a+3b=-3 ②.所以由①,②解得a=-1,b=0.
(2)由(1)知f(x)=x3-3x2+c,f ¢(x)=3x2-6x.f ¢(x)=0的另一個(gè)根為x=0.列表如下:
x |
(-∞,0) |
0 |
(0,2) |
2 |
(2,+∞) |
f ¢(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
↗ |
極大值 |
↘ |
極小值 |
↗ |
因此,當(dāng)x=0時(shí),f(x)有極大值f(0)=c;當(dāng)x=2時(shí),f(x)有極小值f(2)=c-4.所以,所求的極大值與極小值之差為c-(c-4)=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(,、是常數(shù),且),對(duì)定義域內(nèi)任意(、且),恒有成立.
(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;
(2)求的取值范圍,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,,
.(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com