12.已知函數(shù)f(x)=2x,若從區(qū)間[-2,2]上任取一個(gè)實(shí)數(shù)x,則使不等式f(x)>2成立的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2016}$D.$\frac{1}{2}$

分析 由題意,本題符合幾何概型的特點(diǎn),只要求出區(qū)間長(zhǎng)度,由公式解答.

解答 解:已知區(qū)間[-2,2]長(zhǎng)度為4,
滿足f(x)>2,f(x)=2x>2,解得1<x≤2,對(duì)應(yīng)區(qū)間長(zhǎng)度為1,
由幾何概型公式可得,使不等式f(x)>2成立的概率P=$\frac{1}{4}$.
故選:A.

點(diǎn)評(píng) 本題考查了幾何概型的運(yùn)用;根據(jù)是明確幾何測(cè)度,是利用區(qū)域的長(zhǎng)度、面積還是體積表示,然后利用公式解答

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$(x∈R).  
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)a的值組成的集合A;
(3)設(shè)關(guān)于x的方程f(x)=$\frac{1}{x}$的兩個(gè)非零實(shí)根為x1,x2,試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,$|{\overrightarrow c}|=\sqrt{3}$,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,則$\overrightarrow a•\overrightarrow b+\overrightarrow b•\overrightarrow c+\overrightarrow c•\overrightarrow a$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xoy中,已知向量$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),0≤x≤π,且f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求tanx的值;
(2)若$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{π}{3}$,求x的值;
(3)求f(x)的單調(diào)區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)e是橢圓$\frac{x^2}{k}+\frac{y^2}{4}=1$的離心率,且$e∈({\frac{1}{2},1})$,則實(shí)數(shù)k的取值范圍是( 。
A.(0,3)B.$({3,\frac{16}{3}})$C.(0,2)D.$({0,3})∪({\frac{16}{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.曲線$\left\{{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}}\right.$(α為參數(shù))上的點(diǎn)到曲線ρcosθ-ρsinθ+1=0的最大距離為$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2+2sinθ•x-1,x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$].
(1)當(dāng)sinθ=-$\frac{1}{2}$時(shí),求f(x)的最大值和最小值;
(2)若f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是單調(diào)函數(shù),且θ∈[0,2π),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列四個(gè)函數(shù)中在(0,+∞)上為增函數(shù)的是(  )
A.f(x)=3-xB.f(x)=(x-1)2C.f(x)=$\frac{1}{x}$D.f(x)=x2+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=x2+bx-alnx.
(1)當(dāng)a>0時(shí),函數(shù)f(x)是否存在極值?判斷并證明你的結(jié)論;
(2)若x=2是函數(shù)f(x)的極值點(diǎn),1和x0是函數(shù)f(x)的兩個(gè)不同零點(diǎn),且x0∈(n,n+1),求自然數(shù)n的值;
(3)若對(duì)任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案