已知函數(shù)f(x)=x-
1x
,求證:
(Ⅰ)f(x)是奇函數(shù);
(Ⅱ)f(x)在(-∞,0)上是增函數(shù).
分析:(I)先求函數(shù)的定義域,然后根據(jù)函數(shù)的奇偶性的定義進(jìn)行判定即可;
(Ⅱ)利用取值、作差、變形、判斷符號、下結(jié)論這五步進(jìn)行證明,主要利用通分和提取公因式進(jìn)行變形.
解答:證明:(Ⅰ)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),關(guān)于原點(diǎn)對稱,
f(x)=x-
1
x
,f(-x)=(-x)-
1
(-x)
=-x+
1
x
=-(x-
1
x
)

∴f(-x)=-f(x),f(x)是奇函數(shù);
(Ⅱ)設(shè)任意的x1,x2∈(-∞,0),且x1<x2,
f(x1)-f(x2)=(x1-
1
x1
)-(x2-
1
x2
)=(x1-x2)+(
1
x2
-
1
x1
)
=(x1-x2)+
x1-x2
x1x2
=(x1-x2)(1+
1
x1x2
)=(x1-x2)•
x1x2+1
x1x2
,
∵x1<0,x2<0,且x1<x2,
∴x1-x2<0,x1x2>0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴f(x)在(-∞,0)上是增函數(shù).
點(diǎn)評:本題主要考查函數(shù)奇偶性的判定,以及單調(diào)性的判斷和證明,利用定義法和導(dǎo)數(shù)法是解決函數(shù)單調(diào)性的基本方法.要求熟練掌握常見證明函數(shù)單調(diào)性的方法.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案