已知向量a = ,b =,且存在實(shí)數(shù),使向量m = ab, n = ab,且m⊥n.

  (Ⅰ)求函數(shù)的關(guān)系式,并求其單調(diào)區(qū)間和極值;

  (Ⅱ)是否存在正數(shù)M,使得對(duì)任意,都有成立?若存在求出M;若不存在,說(shuō)明理由.

 

 

 

 

 

 

 

 

 

【答案】

 解(Ⅰ)a·b = 0,m⊥n ,m·n =[ab]·( ab)

   = a2b2 == 0,

  ,在為增函數(shù),

  在為減函數(shù).

  的極大值為的極小值為

 。á颍在[1,1]上為減函數(shù),,

    對(duì)任意,都有,

    故存在正數(shù)M符合要求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿(mǎn)足|
a
|=1,|
b
|=2,且
a
b
方向上的投影與
b
a
方向上的投影相等,則|
a
-
b
|等于( 。
A、3
B、
5
C、
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
滿(mǎn)足
a
=(x,2),
b
=(1,-3)
,且(2
a
+
b
b

(1)求向量
a
的坐標(biāo);     
(2)求向量
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①如果命題“?p”與命題“p或q”都是真命題,那么命題q一定是真命題;
②已知向量
a
,
b
滿(mǎn)足|
a
|=1,|
b
|=4
,且
a
b
=2
,則
a
b
的夾角為
π
6

③若函數(shù)f(x+1)是奇函數(shù),f(x-1)是偶函數(shù),且f(0)=2,則f(2012)=2;
④已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù),函數(shù)g(x)=log4(a•2x-
4
3
a)
,若函數(shù)f(x)的圖象與函數(shù)g(x)的圖象有且只有一個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是(1,+∞).
其中正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
,
c
滿(mǎn)足
a
+
b
+
c
=0,且
a
c
的夾角為60°,|b|=
3
|a|
,則tan<
a
,
b
≥( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
,且|
a
|=1,|
b
|=2,則|2
b
-
a
|的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案