有一段長為11m的木棍,要折成兩端,每段不小于3m的概率為
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計
分析:由題意可得,屬于與區(qū)間長度有關(guān)的幾何概率模型,試驗的全部區(qū)域長度為4,基本事件的區(qū)域長度為2,代入幾何概率公式可求.
解答: 解:設(shè)長為11的線段折成的兩段分別為x,11-x
x≥3
11-x≥3

∴3≤x≤8
根據(jù)幾何概率的計算公式可得,P(A)=
8-3
11
=
5
11

故答案為:
5
11
點(diǎn)評:本題主要考查了幾何概型,解答的關(guān)鍵是將原問題轉(zhuǎn)化為幾何概型問題后應(yīng)用幾何概率的計算公式求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=1+
1
2
t
y=5-
3
2
t
(t為參數(shù))
.以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸的圓C的極坐標(biāo)方程為ρ=2cosθ.
(1)請將直線l轉(zhuǎn)化為極坐標(biāo)方程;
(2)若直線l與圓C交于A,B兩點(diǎn),點(diǎn)M(1,5),求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個盒子中裝有形狀大小相同的5張卡片,上面分別標(biāo)有數(shù)字1,2,3,4,5,甲乙兩人分別從盒子中隨機(jī)不放回的各抽取一張.
(Ⅰ)寫出所有可能的結(jié)果,并求出甲乙所抽卡片上的數(shù)字之和為偶數(shù)的概率;
(Ⅱ)以盒子中剩下的三張卡片上的數(shù)字作為邊長來構(gòu)造三角形,求出能構(gòu)成三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1和2之間依次插入n(n∈N*)個正數(shù)a1,a2,a3,…,an使得這n+2個數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個數(shù)的乘積記作Tn,令bn=2log2Tn
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)令cn=2n,設(shè)Sn=
b1
c1
+
b2
c2
+…+
bn
cn
,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)E、F分別在AB、BC邊上,將△BEF沿EF折疊,點(diǎn)B落在B′處,當(dāng)B′在矩形ABCD內(nèi)部時,AB′的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將側(cè)棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐的側(cè)面和底面分別叫直角三棱錐的“直角面和斜面”;過三棱錐頂點(diǎn)及斜面任兩邊中點(diǎn)的截面均稱為斜面的“中面”.已知直角三角形具有性質(zhì):斜邊長等于斜邊的中線長的2倍.類比上述性質(zhì),直角三棱錐具有性質(zhì):
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一組蜂巢的截面圖,其中第一個圖甲有一個蜂巢,第二個圖乙有7個蜂巢,第三個圖丙有19個蜂巢,按此規(guī)律,以f(n)表示第n個圖蜂巢總數(shù),則f(4)=
 
;f(n)=
 
(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果命題“關(guān)于x的不等式x2-ax+1<0的解集是空集”是假命題,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a5=5,a1=1,則數(shù)列{
1
anan+1
}
的前50項和為
 

查看答案和解析>>

同步練習(xí)冊答案