分析 (1)直接說明幾何體的形狀即可.
(2)畫出側(cè)視圖利用三視圖的數(shù)據(jù)求解即可.
(3)利用幾何體的體積以及表面積公式求解即可.
解答 解:(1)答:由該幾何體的正視圖和俯視圖可知該幾何體是一個(gè)正六棱錐.
(2)解:該幾何體的側(cè)視圖如圖.其中AB=AC,AD⊥BC,且BC的長(zhǎng)是俯視圖正六邊形對(duì)邊的距離,即BC=$\sqrt{3}$a,AD是正六棱錐的高,即AD=$\sqrt{3}$a,所以該平面圖形的面積為$\frac{1}{2}$•$\sqrt{3}$a•$\sqrt{3}$a=$\frac{3}{2}$a2.
(3)解:設(shè)這個(gè)正六棱錐的底面積是S,體積為V,
則S=6×$\frac{\sqrt{3}}{4}$a2=$\frac{3\sqrt{3}}{2}$a2,
所以V=$\frac{1}{3}$×$\frac{3\sqrt{3}}{2}$a2×$\sqrt{3}$a=$\frac{3}{2}$a3.${S_表}={S_底}+{S_側(cè)}=\frac{{3\sqrt{3}}}{2}{a^2}+6×\frac{1}{2}a•\frac{{\sqrt{15}}}{2}a=\frac{{3\sqrt{3}+3\sqrt{15}}}{2}{a^2}$.
點(diǎn)評(píng) 本題考查幾何體的體積的求法,面積的求法,三視圖的應(yīng)用,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,3),(3,-3) | B. | (3,3),(1,-3) | C. | (1,3),(3,3) | D. | (1,3),(3,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com