5.$\sqrt{2+2sin(2π-θ)-co{s}^{2}(π+θ)}$可化簡(jiǎn)為1-sinθ.

分析 利用誘導(dǎo)公式,同角的三角函數(shù)關(guān)系式化簡(jiǎn)后,配方后即可得解.

解答 解:$\sqrt{2+2sin(2π-θ)-co{s}^{2}(π+θ)}$=$\sqrt{si{n}^{2}θ-2sinθ+1}$=$\sqrt{(sinθ-1)^{2}}$=sinθ-1(舍去)或1-sinθ.
故答案為:1-sinθ.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角的三角函數(shù)關(guān)系式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖的平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)B在單位圓上,A(2,0),∠AOB=θ,△ABC為等邊三角形.
(1)若直線(xiàn)OB的斜率為$\frac{2}{3}$,求$\frac{si{n}^{2}θ-sin2θ}{co{s}^{2}θ+cos2θ}$的值;
(2)若θ∈(0,π),求四邊形OACB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如果指數(shù)函數(shù)y=ax(a>0且a≠1)在x∈[0,1]上的最大值與最小值的和為$\frac{5}{2}$,則實(shí)數(shù)a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.把下列各角化為0到2π的角加上2kπ(k∈Z)的形式,并指出它們是哪個(gè)象限的角:
(1)$\frac{23π}{6}$;
(2)-1500°;
(3)-$\frac{18π}{7}$;
(4)672°3′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowhlxft5f$,$\overrightarrow{e}$如圖所示,解答下列各題:
(1)用$\overrightarrow{a}$,$\overrightarrowhjxf51n$,$\overrightarrow{e}$表示$\overrightarrow{DB}$;
(2)用$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{DB}$;
(3)用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{e}$表示$\overrightarrow{EC}$;
(4)用$\overrightarrowl5x9zrn$,$\overrightarrow{c}$表示$\overrightarrow{EC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.將雨數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的$\frac{1}{3}$倍,再將曲線(xiàn)上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,然后把整個(gè)曲線(xiàn)向左平移$\frac{π}{3}$,得到函數(shù)y=sinx的圖象,求函數(shù)f(x)的解析式,并畫(huà)出函數(shù)y=f(x)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在△ABC中,AB=2,AC=3,BC邊上的中線(xiàn)AD=2,則△ABC的面積為$\frac{3\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c且a,b,c成等差數(shù)列.
(1)求B的取值范圍;
(2)若b=2,求2acos2$\frac{C}{2}$+2ccos2$\frac{A}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖1,矩形APCD中,AD=2AP,B為PC的中點(diǎn),將△APB折沿AB折起,使得PD=PC,如圖2.
(1)若E為PD中點(diǎn),證明:CE∥平面APB;
(2)證明:平面APB⊥平面ABCD.

查看答案和解析>>

同步練習(xí)冊(cè)答案