【題目】已知集合A={x||x+1|<1},B={x|( x﹣2≥0},則A∩RB=(
A.(﹣2,﹣1)
B.(﹣2,﹣1]
C.(﹣1,0)
D.[﹣1,0)

【答案】C
【解析】解:由A中的不等式解得:﹣1<x+1<1,即﹣2<x<0,
∴A=(﹣2,0),
由B中的不等式變形得:( x≥2=( 1 ,
解得:x≤﹣1,即B=(﹣∞,﹣1],
∵全集為R,∴RB=(﹣1,+∞),
則A∩(RB)=(﹣1,0).
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí),掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.

(1)已畫出函數(shù)軸左側(cè)的圖像,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的增區(qū)間;

⑵寫出函數(shù)的解析式和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn) ,橢圓 )的離心率為 , 是橢圓 的右焦點(diǎn),直線 的斜率為, 為坐標(biāo)原點(diǎn).

(1)求 的方程;

(2)設(shè)過點(diǎn) 的動(dòng)直線 相交于 , 兩點(diǎn),當(dāng) 的面積最大時(shí),求 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①如果是兩條直線,且,那么平行于經(jīng)過的任何平面;

②如果直線和平面滿足,那么直線與平面內(nèi)的任何直線平行;

③如果直線,和平面滿足,,那么

④如果直線,和平面滿足,,,那么;

⑤如果平面,,滿足,,那么.

其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的各項(xiàng)均為正數(shù),a1=t,k∈N* , k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)當(dāng)k=1,p=5時(shí),若數(shù)列{an}成等比數(shù)列,求t的值;
(2)設(shè)數(shù)列{an}是一個(gè)等比數(shù)列,求{an}的公比及t(用p、k的代數(shù)式表示);
(3)當(dāng)k=1,t=1時(shí),設(shè)Tn=a1+ + +…+ + ,參照教材上推導(dǎo)等比數(shù)列前n項(xiàng)和公式的推導(dǎo)方法,求證:{ Tn ﹣6n}是一個(gè)常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:)的分組區(qū)間為,,,,將其按從左到右的順序分別編號(hào)為第一組,第二組,,第五組,如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組沒有療效的有6人,則第三組中有療效的人數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y= cosx+sinx(x∈R)的圖象向左平移m(m>0)個(gè)單位長度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知2acosA=-(ccosB+bcosC)。

(1)求角A;

(2)若b=2,且ABC的面積為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí)(萬元).每件商品售價(jià)為0.05萬元.通過分析,該工廠生產(chǎn)的商品能全部售完.

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案