已知橢圓,拋物線的焦點均在軸上,的中心和的頂點均為原點,每條曲線上取兩個點,將其坐標記錄于表中:
(1) ,;(2)存在定點.
解析試題分析:(1)設(shè)出標準方程,由點的坐標代入求出基本量即得;(2)巧設(shè)直線的方程為,由直線與橢圓相切,求得,利用直線與的準線相交求點的坐標,寫出以為直徑的圓的方程,利用恒成立求解.
試題解析:(1)設(shè),的標準方程為:,,∵和代入拋物線方程中得到的解相同,∴, (3分)
又和在橢圓上,把點的坐標代入橢圓方程得,,則,
的標準方程分別為,. (6分)
(2)設(shè)直線的方程為,將其代入消去并化簡整理得:
,又直線與橢圓相切,
∴,∴, (8分)
設(shè)切點,則,,
又直線與的準線的交點,
∴以為直徑的圓的方程為, (10分)
化簡整理得恒成立,
故,,即存在定點符合題意. (13分)
考點: 橢圓、拋物線的性質(zhì),圓的性質(zhì),直線與圓橢圓的關(guān)系,定點問題.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C: (a>b>0)的兩個焦點和短軸的兩個端點都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點M(2,0),且與橢圓C相交于A, B兩點.試探討k為何值時,三角形OAB為直角三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓的左、右焦點分別為F1(-1,0),F(xiàn)2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點.
(Ⅰ)若ΔABF2為正三角形,求橢圓的離心率;
(Ⅱ)若橢圓的離心率滿足,0為坐標原點,求證為鈍角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,橢圓的右焦點為,離心率為.
分別過,的兩條弦,相交于點(異于,兩點),且.
(1)求橢圓的方程;
(2)求證:直線,的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的四個頂點恰好是一邊長為2,一內(nèi)角為的菱形的四個頂點.
(I)求橢圓C的方程;
(II)若直線y =kx交橢圓C于A,B兩點,在直線l:x+y-3=0上存在點P,使得 ΔPAB為等邊三角形,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,已知橢圓的左焦點為,左、右頂點分別為,上頂點為,過三點作圓
(Ⅰ)若線段是圓的直徑,求橢圓的離心率;
(Ⅱ)若圓的圓心在直線上,求橢圓的方程;
(Ⅲ)若直線交(Ⅱ)中橢圓于,交軸于,求的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知焦點在軸上的橢圓和雙曲線的離心率互為倒數(shù),它們在第一象限交點的坐標為,設(shè)直線(其中為整數(shù)).
(1)試求橢圓和雙曲線的標準方程;
(2)若直線與橢圓交于不同兩點,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,已知,,,,其中.設(shè)直線與的交點為,求動點的軌跡的參數(shù)方程(以為參數(shù))及普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知的頂點A在射線上,、兩點關(guān)于x軸對稱,0為坐標原點,且線段AB上有一點M滿足當點A在上移動時,記點M的軌跡為W.
(Ⅰ)求軌跡W的方程;
(Ⅱ)設(shè)是否存在過的直線與W相交于P,Q兩點,使得若存在,
求出直線;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com