【題目】某學(xué)校的平面示意圖為如下圖五邊形區(qū)域,其中三角形區(qū)域為生活區(qū),四邊形區(qū)域為教學(xué)區(qū), 為學(xué)校的主要道路(不考慮寬度). .
(1)求道路的長度;(2)求生活區(qū)面積的最大值.
【答案】(1);(2).
【解析】試題分析:(1)連接BD,由余弦定理可得BD,由已知可求 , ,可得 ,利用勾股定理即可得解 的值. (2)設(shè) ,由正弦定理,可得 ,利用三角函數(shù)恒等變換的應(yīng)用化簡可得,結(jié)合范圍3,利用正弦函數(shù)的性質(zhì)可求面積的最大值,從而得解.
試題解析:
(1)
如圖,連接,在中,由余弦定理得:
,∴.
∵,∴,
又,∴.
在中,所以.
(2)設(shè),∵,∴.
在中,由正弦定理,得,
∴.
∴
.
∵,∴.
∴當(dāng),即時(shí), 取得最大值為,
即生活區(qū)面積的最大值為.
注:第(2)問也可用余弦定理和均值不等式求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的主視圖和左視圖如圖(1),它的俯視圖的直觀圖是矩形O1A1B1C1如圖(2),其中O1A1=6,O1C1=2,則該幾何體的側(cè)面積為( )
A.48
B.64
C.96
D.128
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】西部大開發(fā)給中國西部帶來了綠色,人與環(huán)境日趨和諧,群眾生活條件和各項(xiàng)基礎(chǔ)設(shè)施得到了極大的改善,西部某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2017年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
, (其中, 為樣本平均值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣2x+6y=0,則圓心P及半徑r分別為( )
A.圓心P(1,3),半徑r=10
B.圓心P(1,3),半徑
C.圓心P(1,﹣3),半徑r=10
D.圓心P(1,﹣3),半徑 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn).若AC=BD=a,且AC與BD所成的角為60°,則四邊形EFGH的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓過橢圓的上頂點(diǎn)作圓的兩條切線分別與橢圓相交于兩點(diǎn)(不同于點(diǎn)),直線的斜率分別為.
(1)求橢圓的方程;
(2)當(dāng)變化時(shí),①求的值;②試問直線是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:mx﹣y=0,l2:x+my﹣m﹣2=0.
(1)求證:對m∈R,l1與l2的交點(diǎn)P在一個(gè)定圓上;
(2)若l1與定圓的另一個(gè)交點(diǎn)為P1 , l2與定圓的另一個(gè)交點(diǎn)為P2 , 求當(dāng)m在實(shí)數(shù)范圍內(nèi)取值時(shí),△PP1P2的面積的最大值及對應(yīng)的m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形, ,點(diǎn)為的中點(diǎn).
(1)證明: ;
(2)設(shè)點(diǎn)在線段上,且平面,若平面平面,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=x3﹣12x+8在區(qū)間[﹣3,3]上的最大值與最小值分別為M,m,則M﹣m的值為( )
A.16
B.12
C.32
D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com