【題目】已知直線的參數(shù)方程為(, 為參數(shù)),曲線的極坐標方程為.
(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;
(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.
科目:高中數(shù)學 來源: 題型:
【題目】(導學號:05856334)
已知函數(shù)f(x)=ln x+ax2+1.
(Ⅰ)當a=-1時,求函數(shù)f(x)的極值;
(Ⅱ)當a>0時,證明:存在正實數(shù)λ,使得λ恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時, .給出以下命題:
①當x<0時,f(x)=ex(x+1);
②函數(shù)f(x)有五個零點;
③若關于x的方程f(x)=m有解,則實數(shù)m的取值范圍是f(-2)≤m≤f(2);
④對x1,x2∈R,|f(x2)-f(x1)|<2恒成立.
其中,正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中, 平面, , .過的平面交于點,交于點.
(l)求證: 平面;
(Ⅱ)求證:四邊形為平行四邊形;
(Ⅲ)若是,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型娛樂場有兩種型號的水上摩托,管理人員為了了解水上摩托的使用及給娛樂城帶來的經(jīng)濟收入情況,對該場所最近6年水上摩托的使用情況進行了統(tǒng)計,得到相關數(shù)據(jù)如表:
(1)請根據(jù)以上數(shù)據(jù),用最小二乘法求水上摩托使用率關于年份代碼的線性回歸方程,并預測該娛樂場2018年水上摩托的使用率;
(2)隨著生活水平的提高,外出旅游的老百姓越來越多,該娛樂場根據(jù)自身的發(fā)展需要,準備重新購進一批水上摩托,其型號主要是目前使用的Ⅰ型、Ⅱ型兩種,每輛價格分別為1萬元、1.2萬元.根據(jù)以往經(jīng)驗,每輛水上摩托的使用年限不超過四年.娛樂場管理部對已經(jīng)淘汰的兩款水上摩托的使用情況分別抽取了50輛進行統(tǒng)計,使用年限如條形圖所示:
已知每輛水上摩托從購入到淘汰平均年收益是0.8萬元,若用頻率作為概率,以每輛水上摩托純利潤(純利潤=收益-購車成本)的期望值為參考值,則該娛樂場的負責人應該選購Ⅰ型水上摩托還是Ⅱ型水上摩托?
附:回歸直線方程為,其中, .參考數(shù)據(jù),
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面α外有兩條直線m和n,如果m和n在平面α內(nèi)的投影分別是m1和n1,給出下列四個命題:①m1⊥n1m⊥n;②m⊥nm1⊥n1;③m1與n1相交m與n相交或重合;④m1與n1平行m與n平行或重合.其中不正確的命題個數(shù)是( )
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求實數(shù)的取值范圍;
(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 為圓的直徑,點, 在圓上, ,矩形和圓所在的平面互相垂直,已知, .
(Ⅰ)求證:平面平面;
(Ⅱ)當的長為何值時,二面角的大小為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com