【答案】
分析:先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,然后由函數(shù)y=f (x)的定義域?yàn)閇a,b],值域?yàn)閇ka,kb]可判斷出k>0,結(jié)合函數(shù)的單調(diào)性討論a、b,建立方程,即可得到實(shí)數(shù)k的取值范圍,從而求出最小值.
解答:解:∵f(x)=x(x-3)
2=x
3-6x
2+9x x∈[0,+∞),
∴f′(x)=3x
2-12x+9=3(x-1)(x-3)
當(dāng)x∈[0,1]時(shí)f′(x)≥0,則函數(shù)在[0,1]上單調(diào)遞增
當(dāng)x∈[1,3]時(shí)f′(x)0,則函數(shù)在[1,3]上單調(diào)遞減
當(dāng)x∈(3,+∞)時(shí)f′(x)>0,則函數(shù)在(3,+∞)上單調(diào)遞增
∴當(dāng)x=1時(shí),函數(shù)取極大值4,當(dāng)x=3時(shí),函數(shù)取極小值0.
(1)當(dāng)a,b∈[0,1]時(shí),f(x)在[0,1]上為增函數(shù),
∴
即在[0,1]上存在兩個(gè)不等的實(shí)數(shù)使得(x-3)
2=k
而(x-3)
2在[0,1]上單調(diào)遞減,故不存在;
(2)當(dāng)a,b∈[1,3]時(shí),f(x)在[1,3]上為減函數(shù),
∴
即a=b,此時(shí)實(shí)數(shù)a,b的值不存在.
(3)當(dāng)a,b∈(3,+∞)時(shí),f(x)在(3,+∞)上為增函數(shù),
∴
即在(3,+∞)上存在兩個(gè)不等的實(shí)數(shù)使得(x-3)
2=k
而(x-3)
2在(3,+∞)上單調(diào)遞增,故不存在;
(4)當(dāng)a∈[0,1),b∈[1,3]時(shí),1∈[a,b],f(1)=4=kb
∴k=
∈[
,4]
(5)當(dāng)a∈(1,2),b∈[3,+∞)時(shí),3∈[a,b],f(3)=0=ka
根據(jù)題意可知k>0
∴a=0,不可能
(6)當(dāng)a∈[0,1),b∈[3,+∞)時(shí),3∈[a,b],f(3)=0=ka,1∈[a,b],f(1)=4=kb
根據(jù)題意可知k>0
∴a=0,
令f(x)=x(x-3)
2=4解得x=1或4
∴3≤b≤4而k=
∈[1,
]
(7)當(dāng)a∈[0,1),b∈[4,+∞)時(shí),4∈[a,b],f(4)=1,1∈[a,b],f(1)=4=kb
根據(jù)題意可知k>0,∴a=1,
令f(x)=x(x-3)
2=4解得x=1或4
∴b=4而k=
=1.
綜上所述:k∈[1,4]
最小的k值為1
故選A.
點(diǎn)評(píng):本題主要考查了函數(shù)與方程的綜合應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,解題的關(guān)鍵是理解題意,將問(wèn)題正確轉(zhuǎn)化,進(jìn)行分類討論探究,同時(shí)考查了分類討論的思想,方程的思想,考察了推理判斷能力,是一道綜合性較強(qiáng)的題,思維難度大,解題時(shí)要嚴(yán)謹(jǐn),屬于難題.