分析 證明直線EF垂直平面A1B1C內(nèi)的兩條相交直線A1C、B1C,可得EF⊥平面A1B1C,從而B1在平面A1ECF上的射影在線段A1C上,則∠B1A1C就是A1B1與平面A1ECF所成的角.然后解三角形,求A1B1與平面A1ECF所成角的正切值,即可得出結(jié)論.
解答 解:連接C1B,
∵E、F分別為C1D1與AB的中點(diǎn),
∴A1F=CE.
又A1F∥CE,
∴A1FCB為平行四邊形,
∴C1B∥EF.
而C1B⊥B1C,
∴EF⊥B1C.
又四邊形A1ECF是菱形,∴EF⊥A1C.∴EF⊥面A1B1C.
又EF?平面A1ECF,
∴平面A1B1C⊥平面A1ECF,
∴B1在平面A1ECF上的射影在線段A1C上.
∴∠B1A1C就是A1B1與平面A1ECF所成的角.
∵A1B1⊥B1C,在Rt△A1B1C中,tan∠B1A1C=$\sqrt{2}$.
∴A1B1與平面A1ECF所成角為arctan$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點(diǎn)評 本題考查直線與平面垂直的判定,直線與平面所成的角,考查學(xué)生空間想象能力,邏輯思維能力,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a2-M | B. | M-2a2 | C. | 2M-a2 | D. | a2-2M |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{4\sqrt{5}}{5}$+1 | C. | 1 | D. | $\frac{4\sqrt{5}}{5}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
空氣污染指數(shù) (單位:μg/m3) | [0,50] | (50,100] | (100,150] | (150,200] |
監(jiān)測點(diǎn)個(gè)數(shù) | 15 | 40 | y | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 18 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com