20.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{4}$,則|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{10}$.

分析 利用兩個(gè)向量的數(shù)量積的定義,根據(jù)|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{{(\overrightarrow{a}+\overrightarrow)}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{+\overrightarrow}^{2}}$,計(jì)算求的結(jié)果.

解答 解:由題意可得|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{{(\overrightarrow{a}+\overrightarrow)}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{+\overrightarrow}^{2}}$=$\sqrt{4+2•2•\sqrt{2}•cos\frac{π}{4}+2}$=$\sqrt{10}$,
故答案為:$\sqrt{10}$.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的定義,求向量的模的方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知?jiǎng)又本y=k(x+1)與橢圓C:x2+3y2=5相交于A、B兩點(diǎn),已知點(diǎn)$M(-\frac{7}{3},0)$,則$\overrightarrow{MA}•\overrightarrow{MB}$的值是( 。
A.$-\frac{9}{4}$B.$\frac{9}{4}$C.$-\frac{4}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.正方體ABCD-A1B1C1D1中,二面角A-BD1-B1的大小是(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面( 。
A.若m∥α,m∥β,則α∥βB.若m⊥α,m∥β,則α∥βC.若m⊥α,n∥α,則m∥nD.若m⊥α,n⊥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=3tan(2x+$\frac{5π}{6}$)的最小正周期為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0}),{F_1}$為左焦點(diǎn),A為右頂點(diǎn),B1,B2分別為上、下頂點(diǎn),若F1,A,B1,B2四點(diǎn)在同一圓上,則此橢圓的離心率為( 。
A.$\frac{{\sqrt{3}-1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a=3e,b=πe,c=π3,其中e=2.71828…為自然對(duì)數(shù)的底數(shù),則a,b,c的大小關(guān)系是( 。
A.a>c>bB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$Ω:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,過點(diǎn)$Q({\frac{{\sqrt{2}}}{2},1})$作圓x2+y2=1的切線,切點(diǎn)分別為S,T.直線ST恰好經(jīng)過Ω的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓Ω的方程;
(2)如圖,過橢圓Ω的右焦點(diǎn)F作兩條互相垂直的弦AB,CD.
①設(shè)AB,CD的中點(diǎn)分別為M,N,證明:直線MN必過定點(diǎn),并求此定點(diǎn)坐標(biāo);
②若直線AB,CD的斜率均存在時(shí),求由A,C,B,D四點(diǎn)構(gòu)成的四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖的三視圖所對(duì)應(yīng)的立體圖形可以是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案