精英家教網 > 高中數學 > 題目詳情
經過點(3,0)的直線l與拋物線y=x2交于不同兩點,拋物線在這兩點處的切線互相垂直,則直線l的斜率是( 。
A.
1
12
B.
1
6
C.-
1
12
D.-
1
6
設直線l的方程為y=k(x-3),代入拋物線方程得x2-kx+3k=0,
設直線l與拋物線的交點為(x1,y1)(x2,y2
則x1x2=3k
∵拋物線在這兩點處的切線的斜率分別是f′(x1)=2x1,f′(x2)=2x2,且兩切線垂直
∴2x12x2=12k=-1
∴k=-
1
12

故選C
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在平面直坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,經過點(1,e),其中e為橢圓的離心率.且橢圓C與直線y=x+
3
有且只有一個交點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設不經過原點的直線l與橢圓C相交與A,B兩點,第一象限內的點P(1,m)在橢圓上,直線OP平分線段AB,求:當△PAB的面積取得最大值時直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

一青蛙從點A0(x0,y0)開始依次水平向右和豎直向上跳動,其落點坐標依次是Ai(xi,yi)(i∈N*),(如圖所示,A0(x0,y0)坐標以已知條件為準),Sn表示青蛙從點A0到點An所經過的路程.
(1)若點A0(x0,y0)為拋物線y2=2px(p>0)準線上一點,點A1,A2均在該拋物線上,并且直線A1A2經過該拋物線的焦點,證明S2=3p.
(2)若點An(xn,yn)要么落在y=x所表示的曲線上,要么落在y=x2所表示的曲線上,并且A0(
1
2
,
1
2
)
,試寫出
lim
n→+∞
Sn
(不需證明);
(3)若點An(xn,yn)要么落在y=2
1+8x
-1
所表示的曲線上,要么落在y=2
1+8x
+1
所表示的曲線上,并且A0(0,4),求Sn的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列三個命題:

①正四棱柱一定是直平行六面體;

②四面體ABCD中,若點A在面BCD上的射影是△BCD的垂心,則點B在面ACD上的射影也是△ACD的垂心;

③經過球面上不同兩點的球的小圓可能不存在.

其中假命題的個數為

A.0                  B.1                C.2               D.3

查看答案和解析>>

科目:高中數學 來源:2011年上海市閔行區(qū)七寶中學高考數學模擬試卷(理科)(解析版) 題型:解答題

一青蛙從點A(x,y)開始依次水平向右和豎直向上跳動,其落點坐標依次是Ai(xi,yi)(i∈N*),(如圖所示,A(x,y)坐標以已知條件為準),Sn表示青蛙從點A到點An所經過的路程.
(1)若點A(x,y)為拋物線y2=2px(p>0)準線上一點,點A1,A2均在該拋物線上,并且直線A1A2經過該拋物線的焦點,證明S2=3p.
(2)若點An(xn,yn)要么落在y=x所表示的曲線上,要么落在y=x2所表示的曲線上,并且,試寫出(不需證明);
(3)若點An(xn,yn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且A(0,4),求Sn的表達式.

查看答案和解析>>

同步練習冊答案