已知函數(shù)f(x)=x2-(c+1)x+c(c∈R).
(1)解關(guān)于x的不等式f(x)<0;
(2)當(dāng)c=-2時(shí),不等式f(x)>ax-5在(0,2)上恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)g(x)=f(x)-ax,已知0<g(2)<1,3<g(3)<5,求g(4)的范圍.
(1)∵f(x)<0,∴x2-(c+1)x+c=(x-1)(x-c)<0…(1分)
①當(dāng)c<1時(shí),c<x<1
②當(dāng)c=1時(shí),(x-1)2<0,∴x∈φ
③當(dāng)c>1時(shí),1<x<c…(3分)
綜上,當(dāng)c<1時(shí),不等式的解集為{x|c<x<1},當(dāng)c=1時(shí),不等式的解集為φ,當(dāng)c>1時(shí),不等式的解集為{x|1<x<c}.         …(4分)
(2)當(dāng)c=-2時(shí),f(x)>ax-5在(0,2)上恒成立,等價(jià)于x2+x-2>ax-5在(0,2)上恒成立,
即ax<x2+x+3在(0,2)上恒成立,
∴a<(
x2+x+3
x
min,
設(shè)g(x)=
x2+x+3
x
,則g(x)=x+
3
x
+1≥2
3
+1
當(dāng)且僅當(dāng)x=
3
x
,即x=
3
∈(0,2)時(shí),等號(hào)成立
∴g(x)min=2
3
+1
∴a<2
3
+1;
(3)∵g(2)=f(2)-2a=2-c-2a,∴0<2-c-2a<1
∴1<c+2a<2
∵g(3)=f(3)-3a=6-2c-3a,∴3<2-c-2a<5,∴1<2c+3a<3…(10分)
∵g(4)=f(4)-4a=12-3c-4a
設(shè)-3c-4a=x(c+2a)+y(2c+3a)=(x+2y)c+(2x+3y)a…(11分)
-3=x+2y
-4=2x+3y
,∴
x=1
y=-2
…(12分)
∴-3c-4a=x(c+2a)+y(2c+3a)=(c+2a)+[-2(2c+3a)]
∵1<c+2a<2-6<-2(2c+3a)<-2,∴-5<-3c-4a<0
,∴$\end{array}\right.7<12-3c-4a<12$…(13分)
∴7<g(4)<12…(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案