【題目】已知曲線
(1)若,求經(jīng)過(guò)點(diǎn)且與曲線只有一個(gè)公共點(diǎn)的直線方程:
(2)若,請(qǐng)?jiān)谥苯亲鴺?biāo)平面內(nèi)找出縱坐標(biāo)不同的兩個(gè)點(diǎn),此兩點(diǎn)滿(mǎn)足條件:無(wú)論如何變化,這兩個(gè)點(diǎn)都不在曲線上;
(3)若曲線與線段有公共點(diǎn),求的最小值。
【答案】(1)或(2)16
【解析】
(1)由題得曲線為,設(shè)直線,聯(lián)立得,再根據(jù)即得m的值和直線的方程.(2)由題得曲線為,當(dāng),,當(dāng),無(wú)論如何變化,曲線都不可能為,所以?xún)牲c(diǎn)可以是和,,.(3)
聯(lián)立得,當(dāng),,
當(dāng),對(duì)分類(lèi)討論得到的最小值.
(1)曲線為,設(shè)直線,聯(lián)立得,
∴所求直線方程為或
(2)曲線為,當(dāng),,當(dāng),。,
∴無(wú)論如何變化,曲線都不可能為,∴兩點(diǎn)可以是和,,
(3)聯(lián)立得,當(dāng),,
當(dāng),①,,,數(shù)形結(jié)合可得
②,且只一個(gè)共公點(diǎn),,,,
數(shù)形結(jié)合可得,
③,,且有兩個(gè)公共點(diǎn),,,,
,,,數(shù)形結(jié)合可得
④,,且有兩個(gè)公共點(diǎn),,,,
,,,不符,舍去
綜上所述,的最小值為16
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)對(duì)一年級(jí)的甲、乙兩個(gè)班進(jìn)行“數(shù)學(xué)學(xué)前教育”對(duì)“小學(xué)數(shù)學(xué)成績(jī)優(yōu)秀”影響的試驗(yàn),其中甲班為試驗(yàn)班(實(shí)施了數(shù)學(xué)學(xué)前教育),乙班為對(duì)比班(和甲班一樣進(jìn)行常規(guī)教學(xué),但沒(méi)有實(shí)施數(shù)學(xué)學(xué)前教育),在期末測(cè)試后得到如下數(shù)據(jù):
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | 30 | 20 | 50 |
乙班 | 25 | 25 | 50 |
總計(jì) | 55 | 45 | 100 |
能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為進(jìn)行“數(shù)學(xué)學(xué)前教育”對(duì)“小學(xué)數(shù)學(xué)成績(jī)優(yōu)秀”有積極作用?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為,坐標(biāo)原點(diǎn)O到直線x+y-b=0的距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)橢圓C的右焦點(diǎn)F且傾斜角為45°的直線l與橢圓C交于A,B兩點(diǎn),對(duì)于橢圓C上一點(diǎn)M,若(λ>0,μ>0),求λμ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)在國(guó)慶黃金周的促銷(xiāo)活動(dòng)中,對(duì)10月1日9時(shí)至14時(shí)的銷(xiāo)售額進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.已知9時(shí)至10時(shí)的銷(xiāo)售額為3萬(wàn)元,則11時(shí)至12時(shí)的銷(xiāo)售額為萬(wàn)元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在區(qū)間(﹣∞,t]上存在x,使得不等式x2﹣4x+t≤0成立,則實(shí)數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,A,B兩點(diǎn)為噴泉,圓心O為AB的中點(diǎn),其中OA=OB=a米,半徑OC=10米,市民可位于水池邊緣任意一點(diǎn)C處觀賞.
(1)若當(dāng)∠OBC= 時(shí),sin∠BCO= ,求此時(shí)a的值;
(2)設(shè)y=CA2+CB2 , 且CA2+CB2≤232.
(i)試將y表示為a的函數(shù),并求出a的取值范圍;
(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)C處觀賞噴泉時(shí),觀賞角度∠ACB的最大值不小于 ,試求A,B兩處噴泉間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修:4﹣2:矩陣與變換
若圓C:x2+y2=1在矩陣 (a>0,b>0)對(duì)應(yīng)的變換下變成橢圓E: ,求矩陣A的逆矩陣A﹣1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ=2sinθ,直線l的參數(shù)方程是 (t為參數(shù)).設(shè)直線l與x軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),求MN的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)人從出生到死亡,在每個(gè)生日都測(cè)量身高,并作出這些數(shù)據(jù)的散點(diǎn)圖,這些點(diǎn)將不會(huì)落在一條直線上,但在一段時(shí)間內(nèi)的增長(zhǎng)數(shù)據(jù)有時(shí)可以用線性回歸來(lái)分析,下表是一位母親給兒子做的成長(zhǎng)記錄:
年齡/周歲 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 91.8 | 97.6 | 104.2 | 110.9 | 115.6 | 122.0 | 128.5 |
年齡/周歲 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
身高/cm | 134.2 | 140.8 | 147.6 | 154.2 | 160.9 | 167.5 | 173.0 |
(1)年齡(解釋變量)和身高(預(yù)報(bào)變量)之間具有怎樣的相關(guān)關(guān)系?
(2)如果年齡相差5歲,則身高有多大差異(3~16歲之間)?
(3)如果身高相差20 cm,其年齡相差多少(3~16歲之間)?
(4)試判斷該函數(shù)模型是否能夠較好地反映年齡與身高的關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com