8.若一個(gè)圓臺(tái)的正視圖如圖所示,則其體積等于$\frac{14π}{3}$.

分析 根據(jù)已知,求出圓臺(tái)的上下底面面積,及高,代入圓臺(tái)體積公式,可得答案.

解答 解:由已知可得:
圓臺(tái)的上底面直徑為2,半徑為1,面積為:π,
圓臺(tái)的下底面直徑為4,半徑為2,面積為:4π,
圓臺(tái)的高為2,
故圓臺(tái)的體積V=$\frac{1}{3}×(π+\sqrt{π•4π}+4π)×2$=$\frac{14π}{3}$,
故答案為:$\frac{14π}{3}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是圓臺(tái)的體積,熟練掌握?qǐng)A臺(tái)的體積公式,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x3-$\frac{3}{2}$x2+1(x∈R).
(Ⅰ)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程
(Ⅱ)求函數(shù)f(x)在區(qū)間[a,2](0<a<2)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}的公差d>0,且a1•a6=11,a3+a4=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{{a}_{n+1}-2{a}_{n}}{{2}^{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{0(x>0)}\\{π(x=0)}\\{{π}^{2}+1(x<0)}\end{array}\right.$,則f(-1)的值等于(  )
A.π2-1B.π2+1C.πD.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,頂點(diǎn)A(5,1)、B(-1,-3)、C(4,3),AB邊上的中線CM和AC邊上的高線BN的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2${\;}^{{x^2}-2x-3}}$.
(Ⅰ)求函數(shù)f(x)的定義域和值域;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.命題“?x∈R,x2-2x-3>0”的否定是“?x∈R,x2-2x-3≤0”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}中,a1=3,an+1=can+m(c,m為常數(shù))
(1)當(dāng)c=1,m=1時(shí),求數(shù)列{an}的通項(xiàng)公式an;
(2)當(dāng)c=2,m=-1時(shí),證明:數(shù)列{an-1}為等比數(shù)列;
(3)在(2)的條件下,記bn=$\frac{1}{{a}_{n}-1}$,Sn=b1+b2+…+bn,證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)集合A={0,2,4,6,8,10},B={4,8},則∁AB={0,2,6,10}.

查看答案和解析>>

同步練習(xí)冊(cè)答案