【題目】己知橢圓上動點(diǎn),點(diǎn)為原點(diǎn).

1)若,求證:為定值;

2)點(diǎn),若,求證:直線過定點(diǎn);

3)若,求證:直線為定圓的切線.

【答案】1;(2)證明見解析;(3)證明見解析

【解析】

1)設(shè),可求得,進(jìn)而由在橢圓上,代入橢圓方程并整理可得,進(jìn)而由,整理可得為定值;

2)易知,直線的斜率存在,設(shè)其方程為,與橢圓方程聯(lián)立并消去,得到關(guān)于的一元二次方程,由,且直線的斜率均存在,可得到,將其展開并結(jié)合韋達(dá)定理,可用表示,進(jìn)而可知直線過定點(diǎn);

3)當(dāng)斜率都存在時(shí),設(shè)出兩直線的方程,分別與橢圓方程聯(lián)立,可得到、的表達(dá)式,進(jìn)而可設(shè)到直線的距離為,則,整理可得,即到直線的距離為定值;當(dāng)的斜率有一個(gè)不存在時(shí),可求得直線的方程,進(jìn)而可求出圓心到直線的距離也為相同定值.

證明:(1)由題意,設(shè)

,

在橢圓上,則,

代入得,,

整理得,,

因?yàn)?/span>,所以

,

為定值;

2)易知,直線的斜率存在,設(shè)其方程為,,

聯(lián)立,消去得,

,,

,且直線的斜率均存在,

,整理得,

因?yàn)?/span>,,

所以,

整理得,,

所以,

整理得,,

,所以,或,

因?yàn)?/span>,所以,所以直線恒過定點(diǎn);

3)當(dāng)斜率都存在時(shí),

設(shè)方程為,

方程為,

聯(lián)立,可得,

所以

同理可得,

設(shè)到直線的距離為,即為斜邊上的高,

,

故當(dāng)斜率都存在時(shí),到直線的距離為定值.

當(dāng)的斜率有一個(gè)不存在時(shí),此時(shí)直線為連接長軸和短軸端點(diǎn)的一條直線,方程為,

點(diǎn)到直線的距離為.

綜上,原點(diǎn)到直線的距離為定值,即直線為定圓的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x,y,z∈(0,+∞),x+y+z=3.

(1)的最小值;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,令an=lgxn,a1+a2+…+a99的值為(  )

A. 1 B. 2 C. -2 D. -1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù)。乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中經(jīng)X表示。

1)如果X=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差

2)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對邊,若a=2,C=,cos,求ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了紀(jì)念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機(jī)抽取了40份答卷,發(fā)現(xiàn)成績都在內(nèi),現(xiàn)將成績按區(qū)間,,,,進(jìn)行分組,繪制成如下的頻率分布直方圖.

青年組

中老年組

(1)利用直方圖估計(jì)青年組的中位數(shù)和老年組的平均數(shù);

(2)從青年組,的分?jǐn)?shù)段中,按分層抽樣的方法隨機(jī)抽取5份答卷,再從中選出3份答卷對應(yīng)的市民參加政府組織的座談會,求選出的3位市民中有2位來自分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象相鄰兩條對稱軸的距離為,將函數(shù)的圖象向左平移個(gè)單位后,得到的圖象關(guān)于y軸對稱則函數(shù)的圖象( )

A. 關(guān)于直線對稱 B. 關(guān)于直線對稱

C. 關(guān)于點(diǎn)對稱 D. 關(guān)于點(diǎn)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是( )

A. 命題,則”的逆否命題為真命題;

B. 命題“”為假命題,則命題與命題都是假命題;

C. 成立的必要不充分條件;

D. 命題存在,使得”的否定是:“對任意,均有.

查看答案和解析>>

同步練習(xí)冊答案