18.已知△ABC中,內角A,B,C所對的邊分別為,b,c,且acosC+$\frac{{\sqrt{3}}}{2}$c=b,若a=1,$\sqrt{3}$c-2b=1,則角C為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 已知等式利用正弦定理化簡,整理求出cosA的值,求出A的度數(shù),利用余弦定理列出關系式,把a與sinA的值代入得到關于b與c的方程,與已知等式聯(lián)立求出b與c的值,再利用正弦定理求出sinB的值,即可確定出B的度數(shù),由三角形內角和定理即可求得C的值.

解答 解:已知等式利用正弦定理化簡得:sinAcosC+$\frac{{\sqrt{3}}}{2}$sinC=sinB=sin(A+C)=sinAcosC+cosAsinC,
由sinC≠0,整理得:cosA=$\frac{{\sqrt{3}}}{2}$,即A=$\frac{π}{6}$,
由余弦定理得:a2=b2+c2-2bccosA,即1=b2+c2-$\sqrt{3}$bc①,
與$\sqrt{3}$c-2b=1聯(lián)立,解得:c=$\sqrt{3}$,b=1,
由正弦定理$\frac{a}{sinA}=\frac{sinB}$,得:sinB=$\frac{bsinA}{a}$=$\frac{1×\frac{1}{2}}{1}$=$\frac{1}{2}$,
∵b<c,∴B<C,
則B=$\frac{π}{6}$,C=π-A-B=$\frac{2π}{3}$.
故選:D.

點評 此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=|2x+1|+|2x-3|.
(1)求不等式f(x)≤6的解集;
(2)已知a>0,若關于x的不等式f(x)<|a-2|的解集非空,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在某個位置測得某山峰仰角為θ,對著山峰在地面上前進600m后測得仰角為2θ,繼續(xù)在地面上前進200$\sqrt{3}$m以后測得山峰的仰角為4θ,求該山峰的高度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知定義在(0,$\frac{π}{2}}$)上的函數(shù)f(x),f'(x)為其導數(shù),且$\frac{f(x)}{{{sin}x}}$<$\frac{f'(x)}{cosx}$恒成立,則( 。
A.$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$)B.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)C.f(1)<2f($\frac{π}{6}$)sin1D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)f(x)=ax2-2ax+b(a≠0)在閉區(qū)間[1,2]上有最大值0,最小值-1,則a,b的值為( 。
A.a=1,b=0B.a=-1,b=-1
C.a=1,b=0或a=-1,b=-1D.以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若a=$\root{3}{{{{(3-π)}^3}}}$,b=$\root{4}{{{{(2-π)}^4}}}$,則a+b的值為( 。
A.1B.5C.-1D.2π-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.給出以下四個命題,
①如果平面α,β,γ滿足α⊥γ,β⊥γ,α∩β=l,則l⊥γ
②若直線l上有無數(shù)個點不在平面α內,則l∥α
③已知a,b是異面直線,α,β為兩個平面,若a?α,a∥β,b?β,b∥α,則α∥β
④一個平面內的已知直線必垂直于另一個平面的無數(shù)條直線
其中正確命題的個數(shù)是(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.有下列命題:
①冪函數(shù)f(x)=$\frac{1}{x}$的單調遞減區(qū)間是(-∞,0)∪(0,+∞);
②若函數(shù)f(x+2016)=x2-2x-1(x∈R),則函數(shù)f(x)的最小值為-2;
③若函數(shù)f(x)=loga|x|(a>0,a≠1)在(0,+∞)上單調遞增,則f(-2)<f(a+1);
④若f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,(x<1)}\\{lo{g}_{a}x,(x≥1)}\end{array}\right.$是(-∞,+∞)上的減函數(shù),則a的取值范圍是($\frac{1}{7}$,$\frac{1}{3}$);
 ⑤既是奇函數(shù),又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R).
其中正確命題的序號有②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=|loga|x||(a>0,a≠1),若x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則x1+x2+x3+x4=0.

查看答案和解析>>

同步練習冊答案