14.在正項等比數(shù)列{an}中,a5a4a2a1=16,則a1+a5的最小值是( 。
A.2B.3C.4D.8

分析 利用等比數(shù)列的性質(zhì)、基本不等式的性質(zhì)即可得出.

解答 解:正項等比數(shù)列{an}中,a5a4a2a1=16=$({a}_{5}{a}_{1})^{2}$,
∴a1a5=4
則a1+a5≥2$\sqrt{{a}_{1}{a}_{5}}$=4,
故選:C.

點評 本題考查了等比數(shù)列的通項公式與性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)U={0,-1,-2,-3,-4},M={0,-1,-2},N={0,-3,-4},則(∁UM)∩N等于( 。
A.{0}B.{-1,-2}C.{-3,-4}D.{-1,-2,-3,-4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知△ABC的三個內(nèi)角為A,B,C,若函數(shù)f(x)=x2-xcosA•cosB-cos2$\frac{C}{2}$有一零點為1,則△ABC一定是( 。
A.等腰三角形B.直角三角形C.銳角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ln(x+1)-$\frac{ax}{x+2}$.
(1)討論f(x)的單調(diào)性;
(2)當x>0時,f(x)>0恒成立,求a的取值范圍;
(3)證明:n+1>e${\;}^{\frac{2}{3}+\frac{2}{5}+…+\frac{2}{2n+1}}}$,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某人在2013年投資的1000萬元,如果年收益率是5%,按復(fù)利計算,5年后能收回的本利和為( 。
A.1000×(1+5×5%)萬元B.1000×(1+5%)5萬元
C.$1000×\frac{{1.05×(1-{{1.05}^4})}}{1-1.05}萬元$D.$1000×\frac{{1.05×(1-{{1.05}^2})}}{1-1.05}萬元$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)S(n),T(n)分別為等差數(shù)列{an},{bn}的前n項和,且$\frac{S(n)}{T(n)}$=$\frac{3n+2}{4n+5}$.設(shè)點A是直線BC外一點,點P是直線BC上一點,且$\overrightarrow{AP}$=$\frac{{{a_1}+{a_4}}}{b_3}$•$\overrightarrow{AB}$+λ•$\overrightarrow{AC}$,則實數(shù)λ的值為$-\frac{3}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.為了得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象作如下變換( 。
A.向右平移個單位$\frac{π}{3}$B.向右平移個單位$\frac{π}{6}$
C.向左平移個單位$\frac{π}{3}$D.向左平移個單位$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知復(fù)數(shù)z滿足(2-i)z=5,則z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,A,B 為其左右頂點,P是橢圓上異于A,B一點,直線AP與直線x=a交于點M,AP,BP 的斜率乘積為$-\frac{1}{2}$.
(Ⅰ)求橢圓的離心率;
(Ⅱ)當點M縱坐標為$2\sqrt{6}$時,AM=4AP,求橢圓的方程;
(Ⅲ)若a=2,過M作直線BP的垂線l,問直線l是否恒過定點?若過定點,求出定點坐標;若不過定點,請說明理由.

查看答案和解析>>

同步練習冊答案