方程
.
sinx
3
2
cosx
1
2
.
=0
的解集為
 
分析:先利用二階行列式的定義,化簡可得三角方程,從而得解.
解答:解:由題意,方程可化為
1
2
sinx-
3
2
cosx=0

tanx=
3

x=kπ+
π
3
,k∈Z

故答案為{x|x=kπ+
π
3
,k∈Z}
點評:本題的考點是二階矩陣,主要考查二階行列式,考查三角方程,關鍵是方程的等價變形.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過坐標原點且與圓x2+y2-4x+2y+
5
2
=0
相切的直線方程為( 。
A、y=-3x或y=
1
3
x
B、y=3x或y=-
1
3
x
C、y=-3x或y=-
1
3
x
D、y=3x或y=
1
3
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是公差為d的等差數(shù)列,它的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,S4=2S2+4,b2=
1
9
T2=
4
9

(1)求公差d的值;
(2)若對任意的n∈N*,都有Sn≥S8成立,求a1的取值范圍
(3)若a1=
1
2
,判別方程Sn+Tn=2009是否有解?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知等軸雙曲線C的兩個焦點F1、F2在直線y=x上,線段F1F2的中點是坐標原點,且雙曲線經(jīng)過點(3,
3
2
).
(1)若已知下列所給的三個方程中有一個是等軸雙曲線C的方程:①x2-y2=
27
4
;②xy=9;③xy=
9
2
.請確定哪個是等軸雙曲線C的方程,并求出此雙曲線的實軸長;
(2)現(xiàn)要在等軸雙曲線C上選一處P建一座碼頭,向A(3,3)、B(9,6)兩地轉運貨物.經(jīng)測算,從P到A、從P到B修建公路的費用都是每單位長度a萬元,則碼頭應建在何處,才能使修建兩條公路的總費用最低?
(3)如圖,函數(shù)y=
3
3
x+
1
x
的圖象也是雙曲線,請嘗試研究此雙曲線的性質,你能得到哪些結論?(本小題將按所得到的雙曲線性質的數(shù)量和質量酌情給分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知⊙O的方程是x2+y2-2=0,⊙O'的方程是x2+y2-8x+10=0,由動點P向⊙O和⊙O'所引的切線長相等,則動點P的軌跡方程是
 

查看答案和解析>>

同步練習冊答案