分析 (1)由圖知周期T,利用周期公式可求ω,由f($\frac{π}{12}$)=1,結(jié)合范圍|φ|<$\frac{π}{2}$,可求φ的值,進(jìn)而利用三角函數(shù)圖象變換的規(guī)律即可得解.
(2)利用三角函數(shù)恒等變換的應(yīng)用及三角形內(nèi)角和定理化簡(jiǎn)已知可得cosC=-$\frac{1}{2}$,進(jìn)而可求C,由正弦定理解得c的值,進(jìn)而由余弦定理,基本不等式可求ab≤4,利用三角形面積公式即可得解面積的最大值.
解答 (本題滿分為12分)
解:(1)由圖知$\frac{2π}{ω}$=4($\frac{π}{12}$+$\frac{π}{6}$),解得ω=2,
∵f($\frac{π}{12}$)=sin(2×$\frac{π}{12}$+φ)=1,
∴2×$\frac{π}{12}$+φ=2kπ+$\frac{π}{2}$,k∈Z,即φ=2kπ+$\frac{π}{3}$,k∈Z,
由于|φ|<$\frac{π}{2}$,因此φ=$\frac{π}{3}$,…(3分)
∴f(x)=sin(2x+$\frac{π}{3}$),
∴f(x-$\frac{π}{4}$)=sin[2(x-$\frac{π}{4}$)+$\frac{π}{3}$]=sin(2x-$\frac{π}{6}$),
即函數(shù)y=g(x)的解析式為g(x)=sin(2x-$\frac{π}{6}$),…(6分)
(2)∵2sin2$\frac{A+B}{2}$=g(C+$\frac{π}{3}$)+1,
∴1-cos(A+B)=1+sin(2C+$\frac{π}{2}$),
∵cos(A+B)=-cosC,sin(2C+$\frac{π}{2}$)=cos2C,
cosC=cos2C,即cosC=2cos2C-1,
所以cosC=-$\frac{1}{2}$或1(舍),可得:C=$\frac{2π}{3}$,…(8分)
由正弦定理得$\frac{c}{sinC}=2R=4$,解得c=2$\sqrt{3}$,
由余弦定理得cosC=-$\frac{1}{2}$=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,
∴a2+b2=12-ab≥2ab,ab≤4,(當(dāng)且僅當(dāng)a=b等號(hào)成立),
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\sqrt{3}$,
∴△ABC的面積最大值為$\sqrt{3}$.…(12分)
點(diǎn)評(píng) 本題主要考查了三角函數(shù)周期公式,三角函數(shù)圖象變換的規(guī)律,三角函數(shù)恒等變換的應(yīng)用,三角形內(nèi)角和定理,正弦定理,余弦定理,基本不等式,三角形面積公式在解三角形中的綜合應(yīng)用,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | 2 | D. | $\frac{2\sqrt{15}}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\sqrt{3}$ | C. | -3 | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -π | B. | -$\frac{π}{2}$ | C. | $\frac{π}{4}$ | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com