分析 設(shè)等比數(shù)列{$\frac{{a}_{n}}{n+2}$}的公比為q,由a2=16,a4=96,利用等比數(shù)列的通項(xiàng)公式可得$\frac{96}{4+2}$=$\frac{16}{2+2}$×q2,解得q,進(jìn)而得出答案.
解答 解:設(shè)等比數(shù)列{$\frac{{a}_{n}}{n+2}$}的公比為q,∵a2=16,a4=96,
∴$\frac{96}{4+2}$=$\frac{16}{2+2}$×q2,解得q=±2.
∴當(dāng)q=2時(shí),$\frac{{a}_{n}}{n+2}$=$\frac{16}{2+2}$×2n-2=2n,∴an=(n+2)•2n.
同理可得:當(dāng)q=-2時(shí),an=(n+2)•(-2)n.
∴an=$\left\{\begin{array}{l}{(n+2)•{2}^{n},q=2}\\{(n+2)•(-2)^{n},q=-2}\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}{(n+2)•{2}^{n},q=2}\\{(n+2)•(-2)^{n},q=-2}\end{array}\right.$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{1}{2}$ | C. | $\frac{7}{12}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x(面積) | 4 | 6 | 9 | 7 | 8 | 8 |
y(銷售額) | 3 | 5 | 6 | 4 | 5 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | ||
C. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | D. | f(x)=$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}-1}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com