若向量=(1,2),=(-1,1),且k+-共線,則實數(shù)k=   
【答案】分析:根據(jù)題意,由、的坐標可得k+、-的坐標,由向量平行的判斷公式可得2(2k+1)=(k-1),解可得答案.
解答:解:根據(jù)題意,=(1,2),=(-1,1),
k+=(k-1,2k+1),-=(2,1),
若(k+)∥(-),則必有2(2k+1)=(k-1),
解可得,k=-1,
故答案為-1.
點評:本題考查向量平行的坐標判定方法,要牢記向量平行的判斷公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若向量
a
=(1,2),
b
=(1,-3),則向量
a
b
的夾角等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(1,2)與向量
b
=(λ,-1)共線,則實數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(1,2),
b
=(-3,4),則(
a
b
)•(
a
+
b
)等于( 。
A、20B、(-10,30)
C、54D、(-8,24)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(1,2),
b
=(1,-1),則2
a
+
b
a
-
b
的夾角等于( 。
A、-
π
4
B、
π
6
C、
π
4
D、
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
m
=(1,2),
n
=(x,1)滿足
m
n
,則|
n
|=
 

查看答案和解析>>

同步練習冊答案