【答案】
分析:(Ⅰ)先把拋物線(xiàn)方程整理成標(biāo)準(zhǔn)方程,進(jìn)而求得拋物線(xiàn)的焦點(diǎn)坐標(biāo).先看直線(xiàn)l的斜率不存在時(shí),顯然x
1+x
2=0;看直線(xiàn)斜率存在時(shí)設(shè)斜率為k,截距為b,進(jìn)而用A,B的坐標(biāo)表示出線(xiàn)段AB的中點(diǎn)代入設(shè)的直線(xiàn)方程,及用A,B的坐標(biāo)表示出直線(xiàn)的斜率,聯(lián)立方程可分別求得x
1+x
2和x
21+x
22的表達(dá)式進(jìn)而求得b的范圍,判斷即l的斜率存在時(shí),不可能經(jīng)過(guò)焦點(diǎn)F.最后綜合可得結(jié)論.
(II)設(shè)直線(xiàn)l的方程為:y=2x+b,進(jìn)而可得過(guò)直線(xiàn)AB的方程,代入拋物線(xiàn)方程,根據(jù)判別式大于0求得m的范圍,進(jìn)而根據(jù)AB的中點(diǎn)的坐標(biāo)及b和m的關(guān)系求得b的范圍.
解答:解:(Ⅰ)∵拋物線(xiàn)y=2x
2,即x
2=
,∴p=
,
∴焦點(diǎn)為F(0,
)
(1)直線(xiàn)l的斜率不存在時(shí),顯然有x
1+x
2=0
(2)直線(xiàn)l的斜率存在時(shí),設(shè)為k,截距為b
即直線(xiàn)l:y=kx+b由已知得:
⇒
⇒
⇒x
12+x
22=-
+b≥0⇒b≥
.
即l的斜率存在時(shí),不可能經(jīng)過(guò)焦點(diǎn)F(0,
)
所以當(dāng)且僅當(dāng)x
1+x
2=0時(shí),直線(xiàn)l經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn)F
(II)解:設(shè)直線(xiàn)l的方程為:y=2x+b,
故有過(guò)AB的直線(xiàn)的方程為y=-
x+m,代入拋物線(xiàn)方程有2x
2+
x-m=0,得x
1+x
2=-
.
由A、B是拋物線(xiàn)上不同的兩點(diǎn),于是上述方程的判別式△=
+8m>0,也就是:m>-
.
由直線(xiàn)AB的中點(diǎn)為(
,
)=(-
,
+m),
則
+m=-
+b,于是:b=
+m>
-
=
.
即得l在y軸上的截距的取值范圍是(
,+∞).
點(diǎn)評(píng):本題主要考查了拋物線(xiàn)的應(yīng)用.在解決直線(xiàn)與圓錐曲線(xiàn)的問(wèn)題時(shí),要注意討論直線(xiàn)斜率是否存在的問(wèn)題.