【題目】“辛卜生公式”給出了求幾何體體積的一種計算方法:夾在兩個平行平面之間的幾何體,如果被平行于這兩個平面的任何平面所截,截得的截面面積是截面高(不超過三次)的多項式函數(shù),那么這個幾何體的體積,就等于其上底面積、下底面積與四倍中截面面積的和乘以高的六分之一.即:,式中,,,依次為幾何體的高,下底面積,上底面積,中截面面積.如圖,現(xiàn)將曲線與直線軸圍成的封閉圖形繞軸旋轉一周得到一個幾何體.利用辛卜生公式可求得該幾何體的體積( )

A.B.C.D.

【答案】C

【解析】

根據(jù)“辛卜生公式”:,根據(jù)旋轉體特點,結合已知,即可求得答案.

根據(jù)辛卜生公式:

根據(jù)題意可知該幾何體是由,曲線與直線軸圍成的封閉圖形繞軸旋轉一周得到.

,,,

根據(jù)辛卜生公式

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)年的純利潤為萬元,因設備老化等原因,企業(yè)的生產能力將逐年下降,若不進行技術改造,預測從今年(年)起每年比上一年純利潤減少萬元,今年初該企業(yè)一次性投入資金萬元進行技術改造,預計在未扣除技術改造資金的情況下,第年(今年為第一年)的利潤為萬元(為正整數(shù)).

1)設從今年起的前年,若該企業(yè)不進行技術改造的累計純利潤為萬元,進行技術改造后的累計純利潤為萬元(須扣除技術改造資金),求,的表達式;

2)以上述預測,從今年起該企業(yè)至少經過多少年后,進行技術改造后的累計純利潤超過不進行技術改造的累計純利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 m、n 是兩條不同的直線,α、β、γ是三個不同的平面,下列命題中正確的是(

A.αβ , βγ ,則αγ

B. , mn ,則αβ

C. m、n 是異面直線, , mβ , , nα ,則αβ

D.平面α內有不共線的三點到平面 β的距離相等,則αβ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》中有如下問題:今有蒲生一日,長四尺,莞生一日,長一尺.蒲生日自半,莞生日自倍.意思是:今有蒲第一天長高四尺,莞第一天長高一尺,以后蒲每天長高前一天的一半,莞每天長高前一天的兩倍.請問第幾天,莞的長度是蒲的長度的4倍(

A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義域均為D的三個函數(shù)f(x),g(x),h(x)滿足條件:對任意x∈D,點(x,g(x)與點(x,h(x)都關于點(x,f(x)對稱,則稱h(x)是g(x)關于f(x)的“對稱函數(shù)”.已知g(x)=,f(x)=2x+b,h(x)是g(x)關于f(x)的“對稱函數(shù)”,且h(x)≥g(x)恒成立,則實數(shù)b的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調性;

2)已知函數(shù)時總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“干支紀年法”是中國歷法上自古以來就一直使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字開始,“地支”以“子”字開始,兩者按照干支順序相配,構成了“干支紀年法”,其相配順序為:甲子、乙丑、丙寅癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60為一個周期,周而復始,循環(huán)記錄.按照“干支紀年法”,中華人民共和國成立的那年為己丑年,則2013年為(

A.甲巳年B.壬辰年C.癸巳年D.辛卯年

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,扇形的半徑為,圓心角,點為弧上一點,平面,點∥平面

(1)求證:平面平面;

(2)求平面和平面所成二面角的正弦值的大小.

查看答案和解析>>

同步練習冊答案