設(shè)a,b為實(shí)數(shù),若復(fù)數(shù)
1+2i
a+bi
=i
,則( 。
分析:復(fù)數(shù)的方程兩邊同乘a+bi轉(zhuǎn)化復(fù)數(shù)的方程,利用復(fù)數(shù)相等,求出a,b的值,即可得到選項(xiàng).
解答:解:由復(fù)數(shù)
1+2i
a+bi
=i
可知1+2i=(a+bi)i=ai-b,
所以a=2,b=-1.
故選B.
點(diǎn)評(píng):本題考查復(fù)數(shù)的乘除運(yùn)算,復(fù)數(shù)的相等的充要條件的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對(duì)應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個(gè)虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿(mǎn)足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)a∈ (
3
2
 , 3)
),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C2.且兩條曲線(xiàn)都經(jīng)過(guò)點(diǎn)D(2,
2
)
,求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x0,0)(x0>0)的最小距離不小于
2
3
3
,求實(shí)數(shù)x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2002年全國(guó)各省市高考模擬試題匯編 題型:013

有四個(gè)命題:

①若是實(shí)數(shù),則正整數(shù)n的最小值是4

②設(shè)z是虛數(shù),則z+

③若都是非零復(fù)數(shù),,且復(fù)平面上O為原點(diǎn),點(diǎn)A和B分別與對(duì)應(yīng),∠AOB=,則

④若復(fù)數(shù)z滿(mǎn)足|z-|≤1,則≤arg(-zi)≤,其中真命題是

[  ]

A.①③④
B.①②③
C.①②④
D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省福州市高三上學(xué)期期末質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)是實(shí)數(shù),若復(fù)數(shù)i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在直線(xiàn)x+y=0上,則的值為( )

A、-1    B.0       C.1         D.2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對(duì)應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個(gè)虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿(mǎn)足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C2.且兩條曲線(xiàn)都經(jīng)過(guò)點(diǎn),求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x,0)(x>0)的最小距離不小于,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對(duì)應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個(gè)虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿(mǎn)足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C2.且兩條曲線(xiàn)都經(jīng)過(guò)點(diǎn),求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x,0)(x>0)的最小距離不小于,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案