解:(1)取AC的中點(diǎn)O,連接EO,F(xiàn)O.
因?yàn)镕為棱的中點(diǎn),所以FO∥PA,且,
因?yàn)镻A⊥平面ABC,EO?平面ABC,所以PA⊥EO
所以FO⊥EO.
因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/222978.png' />,AB=AC=2,所以△ABC是邊長為2的等邊三角形.
所以BC=2,因?yàn)镺,E分別為線段AC,AB的中點(diǎn),
所以.
因此在直角三角形EOF中,.
證明:(2)(必要性,即先證明命題“若∠PBC=90°,則平面PBC⊥平面PAB”為真命題.)
因?yàn)镻A⊥平面ABC,所以PA⊥BC.
又因?yàn)椤螾BC=90°,即PB⊥BC,PA∩PB=P,所以BC⊥平面PAB.
又因?yàn)锽C?平面PBC,所以平面PBC⊥平面PAB.
(充分性,即證明命題“若平面PBC⊥平面PAB,則∠PBC=90°”為真命題.)
在平面PAB內(nèi),過A作AD⊥BC,D為垂足.
因?yàn)槠矫鍼BC⊥平面PAB,平面PBC∩平面PAB=PB.
所以AD⊥平面PBC,所以AD⊥BC.
因?yàn)镻A⊥平面ABC,所以PA⊥BC.
又AD,PA?平面PAB,PA∩AD=A,所以BC⊥平面PAB.
所以BC⊥PB,即∠PBC=90°
綜上,“∠PBC=90°”的充要條件是“平面PBC⊥平面PAB”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com