若f′(x)=g′(x),則下列式子一定成立的有( 。
A、f(x)=g(x)
B、∫df(x)=∫dg(x)
C、[∫f(x)dx]′=[∫g(x)dx]′
D、f(x)=g(x)+1
考點(diǎn):導(dǎo)數(shù)的運(yùn)算,定積分
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)和原函數(shù)的關(guān)系即可求出
解答: 解:f′(x)=g′(x),∴f(x)=g(x)+c,c為常數(shù),
由此可以看出,只有B正確,
故選:B
點(diǎn)評(píng):本題考查了兩個(gè)函數(shù)的導(dǎo)函數(shù)與原函數(shù)的關(guān)系,排除法是做選擇題的常用方法,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的極坐標(biāo)方程為ρ=4cosθ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為
x=5+
3
2
t
y=
1
2
t
(t為參數(shù)).設(shè)曲線C與直線l相交于P、Q兩點(diǎn),則|PQ|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=kx+b與圓O:x2+y2=1相交于A,B兩點(diǎn),且|
AB
|=
2-
2
,則
OA
OB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從兩個(gè)班中各隨機(jī)的抽取10名學(xué)生,他們的數(shù)學(xué)成績(jī)?nèi)缦拢?br />
甲班76748296667678725268
乙班86846276789282748885
畫(huà)出莖葉圖并分析兩個(gè)班學(xué)生的數(shù)學(xué)學(xué)習(xí)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的首項(xiàng)為a1=
1
3
,公比q滿(mǎn)足條件q>0且q≠1.又已知a1,5a3,9a5成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);    
(2)令bn=log3
1
an
,試比較
1
b1b3
+
1
b2b4
+
1
b3b5
+
1
b4b6
+…+
1
bn-1bn+1
+
1
bnbn+2
3
4
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={1,2},B={2,3,4},則A∩B=( 。
A、{1,2,3,4}
B、{1,2,2,3,4}
C、{2}
D、{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的一元二次方程x2-2ax+b2=0.
(1)若連續(xù)拋擲兩次骰子得到的點(diǎn)數(shù)分別為a和b,求上述方程有實(shí)根的概率;
(2)若從區(qū)間[0,6]中隨機(jī)取兩個(gè)數(shù)a和b,求上述方程有實(shí)根且a2+b2≤36的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P從點(diǎn)(0,1)沿單位圓x2+y2=1順時(shí)針第一次運(yùn)動(dòng)到點(diǎn)(
2
2
,-
2
2
)時(shí),轉(zhuǎn)過(guò)的角是
 
弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出命題“存在一對(duì)整數(shù)x,y,使得2x+4y=3”的否定形式:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案