②③
分析:①由于
(a>0)在
時(shí)f(x)=0可判斷①;②f(-x)=-x+
=
=-f(x),可判斷②;③當(dāng)0<x
1<x
2時(shí),利用單調(diào)性的定義可判斷
(a>0)在(0,+∞)單調(diào)性,由奇函數(shù)在對稱區(qū)間上的單調(diào)性相同可判斷函數(shù)f(x)在(-∞,0)單調(diào)性,故可判斷③;④令|f(x)|=0可判斷④
解答:①∵
(a>0)在
時(shí)f(x)=0∉(-∞,0)∪(0,+∞),故①不正確;
②f(-x)=-x+
=
=-f(x),則可得函數(shù)f(x)為奇函數(shù),故②正確
③當(dāng)0<x
1<x
2時(shí),f(x
1)-f(x
2)=
=
=
=
∵0<x
1<x
2,a>0
∴x
1-x
2<0,
∴f(x
1)-f(x
2)<0即f(x
1)<f(x
2)
∴
(a>0)在(0,+∞)單調(diào)遞增,由奇函數(shù)在對稱區(qū)間上的單調(diào)性相同可知函數(shù)f(x)在(-∞,0)單調(diào)遞增,故③正確
④|令f(x)|=0可得|x-
|=0,則x=
,只有2個(gè)解,故④不正確;
故答案為②③.
點(diǎn)評:本題主要考查了函數(shù)的性質(zhì):函數(shù)的值域,函數(shù)的奇偶性,函數(shù)的單調(diào)性及函數(shù)與方程的相互轉(zhuǎn)化等性質(zhì)的綜合應(yīng)用,解題的關(guān)鍵是熟練掌握函數(shù)的基本性質(zhì)并能靈活應(yīng)用.