【題目】設等差數(shù)列{an}的前n項和為Sn,若Sm1=-2,Sm=0,Sm1=3,則m=(  )

A. 5 B. 4 C. 3 D. 6

【答案】A

【解析】

根據(jù)數(shù)列前n項和的定義得到的值,再由數(shù)列的前n項和的公式得到,進而求得首項,由=2,解得m.

Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,則

根據(jù)等差數(shù)列的前n項和公式得到Sm,得到首項為-2,故=2,解得m=5.

故答案為:A.

【點睛】

這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知的關(guān)系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等。

型】單選題
結(jié)束】
11

【題目】已知等比數(shù)列{an}的各項均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

【答案】C

【解析】

由題意可知,lga3=b3,lga6=b6再由b3,b6,用a1q表示出a3b6,進而求得qa1,根據(jù){an}為正項等比數(shù)列推知{bn}為等差數(shù)列,進而得出數(shù)列bn的通項公式和前n項和,可知Sn的表達式為一元二次函數(shù),根據(jù)其單調(diào)性進而求得Sn的最大值.

由題意可知,lga3=b3,lga6=b6

∵b3=18,b6=12,則a1q2=1018,a1q5=1012

∴q3=10﹣6

q=10﹣2,∴a1=1022

∵{an}為正項等比數(shù)列,

∴{bn}為等差數(shù)列,

d=﹣2,b1=22.

bn=22+(n﹣1)×(﹣2)=﹣2n+24.

∴Sn=22n+×(﹣2)

=﹣n2+23n=∵nN*,故n=1112時,(Snmax=132.

故答案為:C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知一元二次不等式x2﹣ax﹣b<0的解集是{x|1<x<3}.
(1)求實數(shù)a,b的值;
(2)解不等式 >1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在[﹣m,m](m>0)上的函數(shù)f(x)= +xcosx(a>0,a≠1)的最大值和最小值分別是M、N,則M+N=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+ +5(常數(shù)a,b∈R)滿足f(1)+f(﹣1)=14.
(1)求出a的值,并就常數(shù)b的不同取值討論函數(shù)f(x)奇偶性;
(2)若f(x)在區(qū)間(﹣∞,﹣ )上單調(diào)遞減,求b的最小值;
(3)在(2)的條件下,當b取最小值時,證明:f(x)恰有一個零點q且存在遞增的正整數(shù)數(shù)列{an},使得 =q +q +q +…+q +…成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}為等比數(shù)列,a4+a7=2,a5a6=-8,則a1+a10=(  )

A. 7 B. 5

C. -5 D. -7

【答案】D

【解析】解得

,∴a1a10a1(1+q9)=-7.D.

點睛:在解決等差、等比數(shù)列的運算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運算,但思路簡潔,目標明確;二是利用等差、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問題既快捷又方便的工具,應有意識地去應用.但在應用性質(zhì)時要注意性質(zhì)的前提條件,有時需要進行適當變形. 在解決等差、等比數(shù)列的運算問題時,經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運算量”的方法.

型】單選題
結(jié)束】
8

【題目】在數(shù)列{ }中,已知,,,則等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)a為負整數(shù))的圖像經(jīng)過點.

1)求的解析式;

2)設函數(shù),若上解集非空,求實數(shù)b的取值范圍;

3)證明:方程有且僅有一個解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為(

A.20π
B.24π
C.28π
D.32π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x﹣1,則不等式f(x)<0的解集為(

A.(﹣∞,﹣1)∪(0,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的焦距為2 ,其上下頂點分別為C1 , C2 , 點A(1,0),B(3,2),AC1⊥AC2
(1)求橢圓E的方程及離心率;
(2)點P的坐標為(m,n)(m≠3),過點A任意作直線l與橢圓E相交于點M,N兩點,設直線MB,BP,NB的斜率依次成等差數(shù)列,探究m,n之間是否滿足某種數(shù)量關(guān)系,若是,請給出m,n的關(guān)系式,并證明;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案