A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根據分式的意義將分式進行化簡,結合斜率的意義,得到$\frac{y+1}{x+1}$的最小值是$\frac{1}{4}$,利用數形結合進行求解即可.
解答 解:z=$\frac{x+2y+3}{x+1}$=$\frac{x+1+2(y+1)}{x+1}$=1+2•$\frac{y+1}{x+1}$,
若z=$\frac{x+2y+3}{x+1}$的最小值為$\frac{3}{2}$,
即1+2•$\frac{y+1}{x+1}$的最小值為$\frac{3}{2}$,
由1+2•$\frac{y+1}{x+1}$=$\frac{3}{2}$,得$\frac{y+1}{x+1}$的最小值是$\frac{1}{4}$,
作出不等式組對應的平面區(qū)域,即$\frac{y+1}{x+1}$的幾何意義是區(qū)域內的點P(x,y)到定點D(-1,-1)的斜率的最小值是$\frac{1}{4}$,
由圖象知BD的斜率最小,由$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=a}\\{y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3a}\\{y=0}\end{array}\right.$,
即B(3a,0),
則$\frac{0+1}{3a+1}$=$\frac{1}{4}$,即3a+1=4,則3a=3,
則a=1,
故選:A
點評 本題主要考查線性規(guī)劃的應用,結合分式的性質以及直線斜率的定義,利用數形結合是解決本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a-c>b-d | B. | $\frac{a}xkrosr4$>$\frac{c}$ | C. | ac>bd | D. | c-b>d-a |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [$\frac{π}{6}$,$\frac{π}{2}$] | B. | [$\frac{π}{3}$,$\frac{π}{2}$] | C. | [$\frac{π}{6}$,$\frac{π}{3}$] | D. | [$\frac{π}{6}$,$\frac{2π}{3}$] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com