精英家教網 > 高中數學 > 題目詳情
求證:
sinα
1-cosα
=
1+cosα
sinα
分析:法一:根據平方關系得,1-cos2 α=sin2 α,利用平方差公式展開,再化為分式;
法二:采用左邊減右邊,再通分,利用倍角公式化簡求值即可.
解答:證明:法一:由sin2 α+cos2 α=1得,
1-cos2 α=sin2 α,即(1-cos α)(1+cos α)=sin α•sin α
sinα
1-cosα
=
1+cosα
sinα

法二:
sinα
1-cosα
-
1+cosα
sinα

=
sin2α-(1+cosα)(1-cosα)
(1-cosα)•sinα

=
sin2α-(1-cos2α)
(1-cosα)sinα
=
sin2α-sin2α
(1-cosα)sinα
=0,
sinα
1-cosα
=
1+cosα
sinα
點評:本題考查了平方關系,倍角公式的應用,以及三角函數恒等變換證明方法,注意一題多解的情況.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設0<α<π<β<2π,向量
a
=(1,-2),
b
=(2cosα,sinα),
c
=(sinβ,2cosβ),
d
=(cosβ,-2sinβ)

(1)若
a
b
,求α;
(2)若|
c
+
d
|=
3
,求sinβ+cosβ的值;
(3)若tanαtanβ=4,求證:
b
c

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(cosα,sinα)
,
b
=(cosβ,sinβ)
,
c
=(1,0)

(1)若
a
b
=
2
3
,記α-β=θ,求sin2θ-sin(
π
2
+θ)
的值;
(2)若α≠
2
,β≠kπ(k∈Z),且
a
(
b
+
c
)
,求證:tanα=tan
β
2

查看答案和解析>>

科目:高中數學 來源: 題型:

有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時針旋轉45°”.
(Ⅰ)寫出矩陣M及其逆矩陣M-1;
(Ⅱ)請寫出△ABC在矩陣M-1對應的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標系與參數方程
過P(2,0)作傾斜角為α的直線l與曲線E:
x=cosθ
y=
2
2
sinθ
(θ為參數)交于A,B兩點.
(Ⅰ)求曲線E的普通方程及l(fā)的參數方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5 不等式證明選講)
已知正實數a、b、c滿足條件a+b+c=3,
(Ⅰ)求證:
a
+
b
+
c
≤3
;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)在平面直角坐標系xOy中,判斷曲線C:
x=2cosθ
y=sinθ
(θ為參數)與直線l:
x=1+2t
y=1-t
(t為參數)是否有公共點,并證明你的結論.
(2)已知a>0,b>0,a+b=1,求證:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓Mx2+y2-2tx-6t-10=0,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),若橢圓C與x軸的交點A(5,y0)到其右準線的距離為
10
3
;點A在圓M外,且圓M上的點和點A的最大距離與最小距離之差為2.
(1)求圓M的方程和橢圓C的方程;
(2)設點P為橢圓C上任意一點,自點P向圓M引切線,切點分別為A、B,請試著去求
P
A•
P
B
的取值范圍;
(3)設直線系M:xcosθ+(y-3)sinθ=1(θ∈R);求證:直線系M中的任意一條直線l恒與定圓相切,并直接寫出三邊都在直線系M中的直線上的所有可能的等腰直角三角形的面積.

查看答案和解析>>

同步練習冊答案