如圖,直角三角形ABC的頂點(diǎn)坐標(biāo)A(-1,0),直角頂點(diǎn),頂點(diǎn)C在x軸上.

(1)求△ABC的外接圓M的方程;

(2)設(shè)直線,直線λ能否與圓M相交?為什么?若能相交,直線λ能否將圓M分割成弧長的比值為的兩段?為什么?

答案:
解析:

  

  當(dāng)且僅當(dāng)|m|=1時(shí)等號(hào)成立.

  圓心M(1,0)到直線l的距離  9分

  

  從而圓M截直線l所得的弦所對(duì)的圓心角小于

  所以l不能將圓M分割成弧長的比值為的兩段弧  12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直角三角形ABC中,∠B=90°,AB=1,BC=
3
.點(diǎn)M,N分別在邊AB和AC 上(M點(diǎn)和B點(diǎn)不重合),將△AMN沿MN翻折,△AMN變?yōu)椤鰽′MN,使頂點(diǎn)A′落在邊BC上(A′點(diǎn)和B點(diǎn)不重合).設(shè)∠AMN=θ.
(1)用θ表示∠BA′M和線段AM的長度,并寫出θ的取值范圍;
(2)求線段AN長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角三角形ABC中,∠B=90°,AB=1,BC=
3
.點(diǎn)M,N分別在邊AB和AC上(M點(diǎn)和B點(diǎn)不重合),將△AMN沿MN翻折,△AMN變?yōu)椤鰽'MN,使頂點(diǎn)A'落在邊BC上(A'點(diǎn)和B點(diǎn)不重合).設(shè)∠AMN=θ.
(1)用θ表示線段AM的長度,并寫出θ的取值范圍;
(2)在△AMN中,若
AN
sin∠AMN
=
MA
sin∠ANM
,求線段A'N長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題為選做題,請(qǐng)?jiān)谙铝腥}中任選一題作答)
A(《幾何證明選講》選做題).如圖:直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交邊AC于點(diǎn)D,AD=2,則∠C的大小為
30°
30°

B(《坐標(biāo)系與參數(shù)方程選講》選做題).已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,則點(diǎn)A(2,
4
)到這條直線的距離為
2
2
2
2

C(不等式選講)不等式|x-1|+|x|<3的解集是
(-1,2)
(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•咸陽三模)(考生注意:請(qǐng)?jiān)谙铝腥涝囶}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.(不等式選做題)若不等式|2a-1|≤ |x+
1
x
|
對(duì)一切非零實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為
[-
1
2
,
3
2
]
[-
1
2
,
3
2
]

B.(幾何證明選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點(diǎn)D,AD=2,則∠C的大小為
30°
30°

C.(極坐標(biāo)與參數(shù)方程選做題)若直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=3
2
,圓C:
x=cosθ
y=sinθ
(θ為參數(shù))上的點(diǎn)到直線l的距離為d,則d的最大值為
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:直角三角形ABC中,AC⊥BC,AB=2,D是AB的中點(diǎn),M是CD上的動(dòng)點(diǎn).
(1)若M是CD的中點(diǎn),求
MA
MB
的值;
(2)求(
MA
+
MB
)•
MC
的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案