如圖平面
SAC⊥平面ACB,ΔSAC是邊長(zhǎng)為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值.
解:過(guò)S點(diǎn)作SD⊥AC于D,過(guò)D作DM⊥AB于M,連SM ∵平面SAC⊥平面ACB ∴SD⊥平面ACB ∴SM⊥AB 又∵DM⊥AB ∴∠DMS為二面角S-AB-C的平面角 在Δ SAC中SD=4×在ΔACB中過(guò)C作CH⊥AB于H ∵AC=4,BC= ∴AB= ∵S=1/2AB·CH=1/2AC·BC ∴CH= ∵DM∥CH且AD=DC ∴DM=1/2CH= ∵SD⊥平面ACB DMÌ 平面ACB ∴SD⊥DM 在RTΔSDM中 SM= = = ∴cos∠DMS= = = |
先作出二面角的平面角.由面面垂直可得線面垂直,作 SD⊥平面ACB,然后利用三垂線定理作出二面角的平面角 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖平面SAC⊥平面ACB,ΔSAC是邊長(zhǎng)為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖平面SAC⊥平面ACB,ΔSAC是邊長(zhǎng)為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省江都市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖平面SAC⊥平面ACB,ΔSAC是邊長(zhǎng)為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省聊城市四縣六校聯(lián)考高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com