執(zhí)行如圖所示的框圖,若輸入如下四個函數(shù):
①f(x)=sinx;    
②f(x)=sin(cosx);
③f(x)=2|x|;     
④f(x)=x2+2x+1
則輸出的函數(shù)是( 。
A、f(x)=sinx
B、f(x)=sin(cosx)
C、f(x)=2|x|
D、f(x)=x2+2x+1
考點(diǎn):程序框圖
專題:算法和程序框圖
分析:根據(jù)題意,得該程序框圖輸出的函數(shù)應(yīng)滿足:①是偶函數(shù),②存在零點(diǎn);由此判定各選項(xiàng)中的函數(shù)是否滿足條件即可.
解答: 解:模擬程序框圖的運(yùn)行過程,得:
該程序框圖輸出的函數(shù)應(yīng)滿足條件:
①f(x)-f(-x)=0,是偶函數(shù),②存在零點(diǎn);
對于A,f(x)=sinx是奇函數(shù),不可以輸出;
對于B,f(x)=sin(cosx)是偶函數(shù),存在零點(diǎn),能輸出;
對于C,f(x)=2|x是偶函數(shù),不存在零點(diǎn),不能輸出;
對于D,f(x)=x2+2x+1不是偶函數(shù),不能輸出.
故選:B.
點(diǎn)評:本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運(yùn)行過程,得出解題的關(guān)鍵是輸出的函數(shù)應(yīng)滿足的條件,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,則滿足不等式f(1)<f(lg(2x))的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對角線A1B1上的兩個不同的動點(diǎn).
①存在P,Q兩點(diǎn),使BP⊥DQ;
②存在P,Q兩點(diǎn),使BP,DQ與直線B1C都成45°的角;
③若|PQ|=1,則四面體BDPQ的體積一定是定值;
④若|PQ|=1,則四面體BDPQ在該正方體六個面上的正投影的面積的和為定值.
以上命題為真命題的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從區(qū)間[-5,5]內(nèi)隨機(jī)取出一個數(shù)x,從區(qū)間[-3,3]內(nèi)隨機(jī)取出一個數(shù)y,則使得|x|+|y|≤4的概率是( 。
A、
1
3
B、
1
2
C、
3
5
D、
8
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足條件
y≥x
x+y≥0
y≤1
,則2x•(
1
4
y的最小值是(  )
A、
1
8
B、
1
4
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?n∈N,2n>1000,則非p為( 。
A、?n∈N,2n≤1000
B、?n∈N,2n>1000
C、?n∈N,2n<1000
D、?n∈N,2n≥1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2x4-
1
x
10的展開式中的常數(shù)項(xiàng)為( 。
A、170B、180
C、190D、200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中是奇函數(shù)且存在零點(diǎn)的是( 。
A、f(x)=x2
B、f(x)=
1
x
C、f(x)=sin|x|
D、f(x)=ln(
x2+1
-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-lnx
x+1
,對函數(shù)f(x)定義域內(nèi)的任意x,都有xf(x)<m恒成立,則實(shí)數(shù)m的取值范圍是(  )
A、(1,+∞)
B、(-∞,1)
C、(6,+∞)
D、不確定

查看答案和解析>>

同步練習(xí)冊答案