如圖,在直角梯形ABCD中,,,且,E、F分別為線段CD、AB上的點,且.將梯形沿EF折起,使得平面平面BCEF,折后BD與平面ADEF所成角正切值為

(Ⅰ)求證:平面BDE;
(Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

(1)對于面面垂直的證明,主要是通過線面垂直的判定定理,以及面面垂直的判定定理來得到,屬于基礎題。
(2) 45°

解析試題分析:證明(Ⅰ)∵,平面平面BCEF,∴平面BCEF

BD與平面ADEF所成角,得
,則,,得
FAB中點,可得,又平面BCEF,得,∴平面BDE
(Ⅱ)取中點M,連結MB、MD,易知MBAD,∴平面ABMD即平面ABD.∵平面BCEF,∴MB,∴平面CDE,得,DMBM
MBEC.∴∠DME即平面BCEF與平面ABD所成二面角.
易知∠DME=45°.∴平面BCEF與平面ABD所成二面角為45°.
考點:二面角的平面角,以及面面垂直
點評:考查了空間中垂直的證明,以及二面角的求解的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在棱長為的正方體中,分別為的中點.

(1)求直線與平面所 成 角的大小;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,⊥底面,點在棱上.

(1)求證:平面⊥平面;
(2)當的中點時,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=

(1)求證:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在四棱錐中,,,,分別是的中點.

(Ⅰ)求證;
(Ⅱ)求證;
(Ⅲ)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐P -ABC中,點P在平面ABC上的射影D是AC的中點.BC ="2AC=8,AB" =

(I )證明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,底面,,的中點.

(Ⅰ)證明;
(Ⅱ)證明平面;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在三棱錐中,,,,, 點,分別在棱上,且,

(Ⅰ)求證:平面PAC
(Ⅱ)當的中點時,求與平面所成的角的正弦值;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐的底面為菱形,且,
,的中點.

(Ⅰ)求證:平面;
(Ⅱ)求點到面的距離.

查看答案和解析>>

同步練習冊答案