解答:
解:(1)令f′(x)=2x+a=0,則x=
-.
故函數(shù)f(x)的單調(diào)增區(qū)間為
[-,+∞);
函數(shù)f(x)的單調(diào)減區(qū)間為
(-∞,-].
(2)由f(x)=x
2+ax+a+1=
(x+)2+
a+1-知
h(a)=
a+1-=
1-[()2-a]=
1-[(-1)2-1]=
2-(-1)2,
故h(a)的最大值為2.
(3).f′(x)=e
x(x
2+ax+a+1)+e
x(2x+a)
=e
x[x
2+(a+2)x+(2a+1)],
令f′(x)=0得x
2+(a+2)x+(2a+1)=0,分三種情況討論:
(a)當(dāng)△=(a+2)
2-4(2a+1)=a
2-4a=a(a-4)>0.
即a<0或a>4時(shí),方程x
2+(a+2)x+(2a+1)=0有兩個(gè)不同的實(shí)根x
1,x
2,不妨設(shè)x
1<x
2,
于是f′(x)=e
x(x-x
1)(x-x
2),故有下表:
x | (-∞,x1) | x1 | (x1,x2) | x2 | (x2,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | ↑ | f(x1)為極大值 | ↓ | f(x2)為極小值 | ↑ |
即此時(shí)f(x)有兩個(gè)極值點(diǎn).
(b)當(dāng)△=0即a=0或a=4時(shí),方程x
2+(a+2)x+(2a+1)=0有兩個(gè)相同的實(shí)根x
1=x
2于是f′(x)=e
x(x-x
1)
2故當(dāng)x<x
1時(shí),f′(x);當(dāng)x>x
2時(shí),f′(x)>0,因此f(x)無(wú)極值.
(c)當(dāng)△<0,即0<a<4時(shí),x
2+(a+2)x+(2a+1)>0,
f′(x)=e
x[x
2+(a+2)x+(2a+1)]>0,故f(x)為增函數(shù),此時(shí)f(x)無(wú)極值.
因此當(dāng)a>4或a<0時(shí),f(x)有2個(gè)極值點(diǎn),當(dāng)0≤a≤4時(shí),f(x)無(wú)極值點(diǎn).
綜上所述:當(dāng)a<0或a>4時(shí),f(x)有兩個(gè)極值點(diǎn).