【題目】函數(shù)f(x)的定義域?yàn)镈={x|x∈R且x≠0},且滿足對(duì)于任意的x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)及f(-1)的值;

(2)判斷f(x)的奇偶性并證明.

【答案】(1)f(1)=0,f(-1)=0.(2)偶函數(shù)

【解析】試題分析:(1)賦值法求f(1)以及f(-1)(2)先確定定義域關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)與f(x)關(guān)系,最后根據(jù)奇偶性定義作判斷

試題解析: (1)令x1=x2=1,得f(1)=f(1)+f(1),所以f(1)=0,令x1=x2=-1,得f(1)=f(-1)+f(-1)=0,所以f(-1)=0

(2)令x1=x,x2=-1,得f(-x)=f(x)+f(-1),即f(-x)=f(x),故對(duì)任意的x≠0都有f(-x)=f(x).所以f(x)是偶函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},則A∩B=( 。

A. {1} B. {4} C. {1,3} D. {1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a=0.60.6,b=0.61.5,c=1.50.6,則a,b,c的大小關(guān)系是( )

A.a(chǎn)<b<c B.a(chǎn)<c<b C.b<a<c D.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:“x0∈R,x02﹣1≤0”的否定¬p為( 。

A. x∈Rx2﹣1≤0 B. x∈R,x2﹣10

C. x0∈Rx02﹣10 D. x0∈R,x02﹣10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線l:x+y-4=0與線段AB有公共點(diǎn),其中點(diǎn)A(a+2,3),點(diǎn)B(1,2a),則a的取值范圍是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義集合運(yùn)算AB={c|c=a+b,aA,bB},A={0,1,2},B={3,4,5},則集合AB的子集個(gè)數(shù)為(  )

A. 32 B. 31 C. 30 D. 14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次數(shù)學(xué)競(jìng)賽后,小軍、小民和小樂分列前三名.老師猜測(cè):“小軍第一名,小民不是第一名,小樂不是第三名”.結(jié)果老師只猜對(duì)一個(gè),由此推斷:前三名依次為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x∈R,則“x>1”是“x2+x-2>0”的(  )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知3x+x3=100,[x]表示不超過x的最大整數(shù),則[x]=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案