已知A,B,C三點(diǎn)不共線,O為平面ABC外一點(diǎn),若由向量數(shù)學(xué)公式確定的點(diǎn)P與A,B,C共面,那么λ=________.


分析:由題意,可由四點(diǎn)共面的向量表示的條件對(duì)四個(gè)條件進(jìn)行判斷,判斷標(biāo)準(zhǔn)是驗(yàn)證三個(gè)向量的系數(shù)和是否為1,若為1則說(shuō)明四點(diǎn)M,A,B,C一定共面,由此規(guī)則即可找出正確的條件.
解答:由題意A,B,C三點(diǎn)不共線,點(diǎn)O是平面ABC外一點(diǎn),
若由向量確定的點(diǎn)P與A,B,C共面,

解得λ=
故答案為:
點(diǎn)評(píng):本題考查平面向量的基本定理,利用向量判斷四點(diǎn)共面的條件,解題的關(guān)鍵是熟練記憶四點(diǎn)共面的條件,利用它對(duì)四個(gè)條件進(jìn)行判斷得出正確答案,本題考查向量的基本概念,要熟練記憶.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C三點(diǎn)不共線,且點(diǎn)O滿足
OA
+
OB
+
OC
=0
,則下列結(jié)論正確的是( 。
A、
OA
=
1
3
AB
+
2
3
BC
B、
OA
=
2
3
AB
+
1
3
BC
C、
OA
=-
1
3
AB
-
2
3
BC
D、
OA
=-
2
3
AB
-
1
3
BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C三點(diǎn)不共線,O是平面ABC外的任一點(diǎn),下列條件中能確定點(diǎn)M與點(diǎn)A、B、C一定共面的是( 。
A、
OM
=
OA
+
OB
+
OC
B、
OM
=2
OA
-
OB
-
OC
C、
OM
=
OA
+
1
2
OB
+
1
3
OC
D、
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C三點(diǎn)不共線,M、A、B、C四點(diǎn)共面,則對(duì)平面ABC外的任一點(diǎn)O,有
OM
=
1
2
OA
+
1
3
OB
+t
OC
,則t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C三點(diǎn)不共線,對(duì)平面ABC外一點(diǎn)O,給出下列命題:
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC
;       ②
OM
=
OA
-
OB
+
OC
;
OM
=
OA
+2
OB
+
AC
;          ④
OM
=2
OA
+
OB
+
AC

其中,能推出M,A,B,C四點(diǎn)共面的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C三點(diǎn)不共線,點(diǎn)O是平面ABC外一點(diǎn),則在下列條件中,能得到點(diǎn)M與A,B,C一定共面的一個(gè)條件為
. (填序號(hào))
OM
=
1
2
OA
+
1
2
OB
+
1
2
OC
;②
OM
=2
OA
-
OB
-
OC
;
OM
=
OA
+
OB
+
OC
;④
OM
=
1
3
OA
-
1
3
OB
+
OC

查看答案和解析>>

同步練習(xí)冊(cè)答案