精英家教網 > 高中數學 > 題目詳情

已知函數是函數的反函數,則不等式的解集為

A.                                        B.        

C.                                                D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數列{bn}是數列{an}的“自反函數列”
(1)設函數f(x)=
px+1
x+1
,若由函數f(x)確定的數列{an}的自反數列為{bn},求an;
(2)已知正整數列{cn}的前項和sn=
1
2
(cn+
n
cn
).寫出Sn表達式,并證明你的結論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=
-1
anSn2
,Dn是數列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•寶山區(qū)二模)已知f(x)=
10x+a10x+1
是奇函數.
(1)求a的值;
(2)求f(x)的反函 數 f-1(x),判斷f-1(x)的奇偶性,并給予證明;
(3)若函數y=F(x)是以2為周期的奇函數,當x∈(-1,0)時,F(xiàn)(x)=f-1(x),求x∈(2,3)時F(x)的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)=數學公式是奇函數.
(1)求a的值;
(2)求f(x)的反函 數 f-1(x),判斷f-1(x)的奇偶性,并給予證明;
(3)若函數y=F(x)是以2為周期的奇函數,當x∈(-1,0)時,F(xiàn)(x)=f-1(x),求x∈(2,3)時F(x)的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年長郡中學一模文)(13分)

由函數確定數列,,函數的反函數能確定數列,,若對于任意都有,則稱數列是數列的“自反函數列”.

(I)設函數,若由函數確定的數列的自反數列為,求;

(Ⅱ)已知正數數列的前n項和,寫出表達式,并證明你的結論;

(Ⅲ)在(I)和(Ⅱ)的條件下,,當時,設,是數列的前項和,且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年上海市奉賢區(qū)高三(上)摸底數學試卷(理科)(解析版) 題型:解答題

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數列{bn}是數列{an}的“自反函數列”
(1)設函數f(x)=,若由函數f(x)確定的數列{an}的自反數列為{bn},求an;
(2)已知正整數列{cn}的前項和sn=(cn+).寫出Sn表達式,并證明你的結論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=,Dn是數列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案