【題目】設(shè)點(diǎn)P是直線上一點(diǎn),過點(diǎn)P分別作拋物線的兩條切線PA、PB,其中A、 B為切點(diǎn).
(1)若點(diǎn)A的坐標(biāo)為,求點(diǎn)P的橫坐標(biāo);
(2)直線AB是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),說明理由.
【答案】(1), (2)直線AB過定點(diǎn),定點(diǎn)為,理由見解析.
【解析】
(1)求出切線的方程后,將的縱坐標(biāo)代入可求得橫坐標(biāo);
(2)設(shè),求出過兩點(diǎn)的拋物線的切線方程,將點(diǎn)坐標(biāo)分別代入切線方程進(jìn)行比較分析,可得直線直線AB是過定點(diǎn),得出答案.
(1) 拋物線化為,則.
由,則過點(diǎn)的拋物線的切線的斜率為:.
所以直線的方程為:即:.
當(dāng)時(shí),,所以.
點(diǎn)P的橫坐標(biāo)為
(2) 直線AB是過定點(diǎn).
由題意設(shè)
則
由(1)可知,,
則切線的方程為:,即
所以切線的方程為:
切線的方程為:
又切線PA、PB交于點(diǎn),設(shè)
則有,說明點(diǎn)滿足方程.
即點(diǎn)在直線上.
又,說明點(diǎn)滿足方程.
即點(diǎn)在直線上.
所以兩點(diǎn)都在直線上,
則直線的方程為:
又直線過定點(diǎn).
所以直線AB過定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,是橢圓上關(guān)于原點(diǎn)對稱的兩個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)的坐標(biāo)為時(shí),的周長恰為.
(1)求橢圓的方程;
(2)過點(diǎn)作直線交橢圓于兩點(diǎn),且 ,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面平面,四邊形和都是邊長為2的正方形,點(diǎn),分別是,的中點(diǎn),二面角的大小為60°.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為(,a為常數(shù))),過點(diǎn)、傾斜角為的直線的參數(shù)方程滿足,(為參數(shù)).
(1)求曲線C的普通方程和直線的參數(shù)方程;
(2)若直線與曲線C相交于A、B兩點(diǎn)(點(diǎn)P在A、B之間),且,求和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)對任意的,,,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,直線的斜率為,直線的斜率為,且.
(1)求點(diǎn)的軌跡的方程;
(2)設(shè),,連接并延長,與軌跡交于另一點(diǎn),點(diǎn)是中點(diǎn),是坐標(biāo)原點(diǎn),記與的面積之和為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=lnx+ax2+(2a+1)x.
(1)討論的單調(diào)性;
(2)當(dāng)a﹤0時(shí),證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com