已知橢圓+=1(0<b<2)的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B,過(guò)F、B、C作圓P.
(I)當(dāng)b=時(shí),求圓P的方程;
(II)直線AB與圓P能否相切?證明你的結(jié)論.
【答案】分析:(Ⅰ)求出FC、BC的中垂線方程,聯(lián)立兩方程,解得P的坐標(biāo),根據(jù)b=,確定圓心坐標(biāo)與半徑,即可得到圓P方程;(Ⅱ)直線AB與圓P不能相切,用反證法,如果直線AB與圓P相切,求得c=0或4,與c∈(0,2)矛盾,故可得結(jié)論.
解答:解:(Ⅰ)設(shè)F、B、C的坐標(biāo)分別為(-c,0),(0,b),(2,0),則FC、BC的中垂線分別為
聯(lián)立兩方程,解得x=,y=,即P(
∴b=時(shí),圓心坐標(biāo)為(),半徑PC=
∴圓P方程為(x-2+(y-2=…(6分)
(Ⅱ)直線AB與圓P不能相切.…(7分)
理由如下:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191447822367077/SYS201310241914478223670019_DA/13.png">,kPB=
如果直線AB與圓P相切,則…(10分)
解得c=0或4,
又c2=4-b2∈(0,4),∴c∈(0,2),
而0,4∉(0,2),所以直線AB與圓P不能相切.…(13分)
點(diǎn)評(píng):本題考查解析幾何綜合題,能夠強(qiáng)化學(xué)生對(duì)圓、橢圓有關(guān)知識(shí)的理解,考查計(jì)算能力,訓(xùn)練學(xué)生對(duì)平面解析幾何相關(guān)知識(shí)的認(rèn)識(shí).中等題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓數(shù)學(xué)公式+數(shù)學(xué)公式=1(0<b<2)的離心率等于數(shù)學(xué)公式,拋物線x2=2py (p>0).
(1)若拋物線的焦點(diǎn)F在橢圓的頂點(diǎn)上,求橢圓和拋物線的方程;
(2)若拋物線的焦點(diǎn)F為(0,數(shù)學(xué)公式),在拋物線上是否存在點(diǎn)P,使得過(guò)點(diǎn)P的切線與橢圓相交于A,B兩點(diǎn),且滿足OA⊥OB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年北京市崇文區(qū)高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知橢圓=1(0<b<5)的離心率為,則b等于( )
A.16
B.8
C.5
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省寧波市寧?h知恩中學(xué)高二(上)12月段考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓+=1(0<b<2)的離心率等于,拋物線x2=2py (p>0).
(1)若拋物線的焦點(diǎn)F在橢圓的頂點(diǎn)上,求橢圓和拋物線的方程;
(2)若拋物線的焦點(diǎn)F為(0,),在拋物線上是否存在點(diǎn)P,使得過(guò)點(diǎn)P的切線與橢圓相交于A,B兩點(diǎn),且滿足OA⊥OB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省威海市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓+=1(0<b<2)的離心率等于,拋物線x2=2py (p>0).
(1)若拋物線的焦點(diǎn)F在橢圓的頂點(diǎn)上,求橢圓和拋物線的方程;
(2)若拋物線的焦點(diǎn)F為(0,),在拋物線上是否存在點(diǎn)P,使得過(guò)點(diǎn)P的切線與橢圓相交于A,B兩點(diǎn),且滿足OA⊥OB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案